然后枚举,对每个数,枚举倍数
如果该数为x,倍数为y, 则去找比x * y小的最大的a[i],用a[i] - x *(y -1) 就求出了一个可能的解
bool v[2111111];int pre[2111111];int a[222222];int n;int main() { scanf("%d", &n); for(int i = 0; i
C 没做 留坑
D
给出一个序列 长度10^6
然后要分组,每组是这个序列中某一段连续的子序列,不能为空
然后每组计算一个 maxvalue - minvalue
最后求和
问怎么分组,这个和最大
裸的dp方程是 dp[i] =max( dp[j- 1] + mx[j][i] - mi[j][i] )
肯定不行啊。复杂度太高了
有两种做法。
1. 我们把这个序列看成由若干单增单降的序列组成的,
那么显然,将这个序列划分为若干这些个单增单降的连续子序列 会 最优
那么对一个极点,划分有两种情况,左边或者右边,取最优即可
int a[1111111];long long dp[1111111];int main() { int n; scanf("%d", &n); for(int i = 1; i = a[i - 1] && a[i] >= a[i + 1]) pos = i; if(a[i]
2.对dp方程进行变化
有两种情况
第一种,当前位置的值可能是最大值
那么dp[i] =(dp[j- 1] - mi[j][i] )+ a[i]
另一种,就是当前位置是最小值,
dp[i] = (dp[j - 1] + mx[j][i]) - a[i]
其他情况, 都是无效的状态,即使你更新也不会影响到结果
对于这两种情况
将(dp[j- 1] - mi[j][i] ) 和(dp[j - 1] + mx[j][i]) 进行维护即可
维护时也并不是像这个式子显示的这么复杂
对于到i位置时,我们只要取当前位置之前最大的dp[j],然后假设a[i]为最大值和最小值,去更新这两个式子即可
可以发现覆盖到了所有情况
int main() { int n; scanf("%d", &n); long long ans = 0, x = 0, y = 0; int a; for(int i = 0; i x) x = ans - a; if(!i || ans + a > y) y = ans + a; ans = max(ans, x + a); ans = max(ans, y - a); } printf("%I64d\n", ans); return 0;}
E 没做。留坑
查看更多关于CodeforcesRound#276(Div.1)_html/css_WEB-ITnose的详细内容...