好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

Pytorch可视化的几种实现方法

一,利用 tensorboardX 可视化网络结构

参考 https://github测试数据/lanpa/tensorboardX 支持scalar, image, figure, histogram, audio, text, graph, onnx_graph, embedding, pr_curve and video summaries. 例子要求tensorboardX>=1.2 and pytorch>=0.4

安装

pip install tensorboardX 或 pip install git+https://github测试数据/lanpa/tensorboardX

例子

# demo.py

import torch
import torchvision.utils as vutils
import numpy as np
import torchvision.models as models
from torchvision import datasets
from tensorboardX import SummaryWriter

resnet18 = models.resnet18(False)
writer = SummaryWriter()
sample_rate = 44100
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]

for n_iter in range(100):

    dummy_s1 = torch.rand(1)
    dummy_s2 = torch.rand(1)
    # data grouping by `slash`
    writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)
    writer.add_scalar('da OVlAtd ta/scalar2', dummy_s2[0], n_iter)

    writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter),
                                             'xcosx': n_iter * np.cos(n_iter),
                                             'arctanx': np.arctan(n_iter)}, n_iter)

    dummy_img = torch.rand(32, 3, 64, 64)  # output from network
    if n_iter % 10 == 0:
        x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
        writer.add_image('Image', x, n_i编程客栈ter)

        dummy_audio = torch.zeros(sample_rate * 2)
        for i in range(x.size(0)):
            # amplitude of sound should in [-1, 1]
            dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
        writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)

        writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)

     编程客栈     for name, param in resnet18.named_parameters():
            writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)

        # needs tensorboard 0.4RC or later
        writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.ra HdhCmsTestcppcns测试数据 nd(100), n_iter)

dataset = datasets.MNIST('mnist', train=False, download=True)
images = dataset.test_data[:100].float()
label = dataset.test_labels[:100]

features = images.view(100, 784)
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))

# export scalar data to jsON for external processing
writer.export_scalars_to_json("./all_scalars.json")
writer.close()

运行: python demo.py 会出现runs文件夹,然后在cd到工程目录运行 tensorboard --logdir runs

结果:

二,利用 vistom 可视化

参考:https://github测试数据/facebookresearch/visdom

安装和启动 安装: pip install visdom 启动:python -m visdom.server示例

    from visdom import Visdom
    #单张
    viz.image(
        np.random.rand(3, 512, 256),
        opts=dict(title=\\\\\'Random!\\\\\', caption=\\\\\'How random.\\\\\'),
    )
    #多张
    viz.images(
        np.random.randn(20, 3, 64, 64),
        opts=dict(title=\\\\\'Random ima编程客栈ges\\\\\', caption=\\\\\'How random.\\\\\')
    )

from visdom import Visdom

image = np.zeros((100,100))
vis = Visdom() 
vis.text("hello world!!!")
vis.image(image)
vis.line(Y = np.column_stack((np.random.randn(10),np.random.randn(10))), 
         X = np.column_stack((np.arange(10),np.arange(10))),
         opts = dict(title = "line", legend=["Test","Test1"]))

三,利用pytorchviz可视化网络结构

参考:https://github测试数据/szagoruyko/pytorchviz

到此这篇关于Pytorch可视化的几种实现方法的文章就介绍到这了,更多相关Pytorch可视化内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

查看更多关于Pytorch可视化的几种实现方法的详细内容...

  阅读:35次