摘要
本例采用猫狗大战的部分数据作为数据集,模型是自定义的模型。
训练
1、构建数据集
在data文件夹下面新家train和val文件夹,分别在train和val文件夹下面新家cat和dog文件夹,并将图片放进去。如图:
2、导入库
# 导入库 import torch.nn.functional as F import torch.optim as optim import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets
3、设置超参数
# 设置超参数 BATCH_SIZE = 20 EPOCHS = 10 DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
4、图像处理与图像增强
# 数据预处理 transform = transforms.Compose([ transforms.Resize(100), transforms.RandomVerticalFlip(), transforms.RandomCrop(50), transforms.RandomResizedCrop(150), transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ])
5、读取数据和导入数据
# 读取数据 dataset_train = datasets.ImageFolder('data/train', transform) print(dataset_train.imgs) # 对应文件夹的label print(dataset_train.class_to_idx) dataset_test = datasets.ImageFolder('data/val', transform) # 对应文件夹的label print(dataset_test.class_to_idx) # 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True)
6、定义网络模型
# 定义网络 class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3) self.max_pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(32, 64, 3) self.max_pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 64, 3) self.conv4 = nn.Conv2d(64, 64, 3) self.max_pool3 = nn.MaxPool2d(2) self.conv5 = nn.Conv2d(64, 128, 3) self.conv6 = nn.Conv2d(128, 128, 3) self.max_pool4 = nn.MaxPool2d(2) self.fc1 = nn.Linear(4608, 512) self.fc2 = nn.Linear(512, 1) def forward(self, x): in_size = x.size(0) x = self.conv1(x) x = F.relu(x) x = self.max_pool1(x) x = self.conv2(x) x = F.relu(x) x = self.max_pool2(x) x = self.conv3(x) x = F.relu(x) x = self.conv4(x) x = F.relu(x) x = self.max_pool3(x) x = self.conv5(x) x = F.relu(x) x = self.conv6(x) x = F.relu(x) x = self.max_pool4(x) # 展开 x = x.view(in_size, -1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.sigmoid(x) return x modellr = 1e-4 # 实例化模型并且移动到GPU model = ConvNet().to(DEVICE) # 选择简单暴力的Adam优化器,学习率调低 optimizer = optim.Adam(model.parameters(), lr=modellr)
7、调整学习率
def adjust_learning_rate(optimizer, epoch): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" modellrnew = modellr * (0.1 ** (epoch // 5)) print("lr:",modellrnew) for param_group in optimizer.param_groups: param_group['lr'] = modellrnew
8、定义训练与验证方法
# 定义训练过程 def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device).float().unsqueeze(1) optimizer.zero_grad() output = model(data) # print(output) loss = F.binary_cross_entropy(output, target) loss.backward() optimizer.step() if (batch_idx + 1) % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, (batch_idx + 1) * len(data), len(train_loader.dataset), 100. * (batch_idx + 1) / len(train_loader), loss.item())) # 定义测试过程 def val(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device).float().unsqueeze(1) output = model(data) # print(output) test_loss += F.binary_cross_entropy(output, target, reduction='mean').item() # 将一批的损失相加 pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device) correct += pred.eq(target.long()).sum().item() print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
9、训练并保存模型
# 训练 for epoch in range(1, EPOCHS + 1): adjust_learning_rate(optimizer, epoch) train(model, DEVICE, train_loader, optimizer, epoch) val(model, DEVICE, test_loader) torch.save(model, 'model.pth')
完整代码:
# 导入库 import torch.nn.functional as F import torch.optim as optim import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets # 设置超参数 BATCH_SIZE = 20 EPOCHS = 10 DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 数据预处理 transform = transforms.Compose([ transforms.Resize(100), transforms.RandomVerticalFlip(), transforms.RandomCrop(50), transforms.RandomResizedCrop(150), transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) # 读取数据 dataset_train = datasets.ImageFolder('data/train', transform) print(dataset_train.imgs) # 对应文件夹的label print(dataset_train.class_to_idx) dataset_test = datasets.ImageFolder('data/val', transform) # 对应文件夹的label print(dataset_test.class_to_idx) # 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True) # 定义网络 class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3) self.max_pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(32, 64, 3) self.max_pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 64, 3) self.conv4 = nn.Conv2d(64, 64, 3) self.max_pool3 = nn.MaxPool2d(2) self.conv5 = nn.Conv2d(64, 128, 3) self.conv6 = nn.Conv2d(128, 128, 3) self.max_pool4 = nn.MaxPool2d(2) self.fc1 = nn.Linear(4608, 512) self.fc2 = nn.Linear(512, 1) def forward(self, x): in_size = x.size(0) x = self.conv1(x) x = F.relu(x) x = self.max_pool1(x) x = self.conv2(x) x = F.relu(x) x = self.max_pool2(x) x = self.conv3(x) x = F.relu(x) x = self.conv4(x) x = F.relu(x) x = self.max_pool3(x) x = self.conv5(x) x = F.relu(x) x = self.conv6(x) x = F.relu(x) x = self.max_pool4(x) # 展开 x = x.view(in_size, -1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.sigmoid(x) return x modellr = 1e-4 # 实例化模型并且移动到GPU model = ConvNet().to(DEVICE) # 选择简单暴力的Adam优化器,学习率调低 optimizer = optim.Adam(model.parameters(), lr=modellr) def adjust_learning_rate(optimizer, epoch): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" modellrnew = modellr * (0.1 ** (epoch // 5)) print("lr:",modellrnew) for param_group in optimizer.param_groups: param_group['lr'] = modellrnew # 定义训练过程 def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device).float().unsqueeze(1) optimizer.zero_grad() output = model(data) # print(output) loss = F.binary_cross_entropy(output, target) loss.backward() optimizer.step() if (batch_idx + 1) % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, (batch_idx + 1) * len(data), len(train_loader.dataset), 100. * (batch_idx + 1) / len(train_loader), loss.item())) # 定义测试过程 def val(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device).float().unsqueeze(1) output = model(data) # print(output) test_loss += F.binary_cross_entropy(output, target, reduction='mean').item() # 将一批的损失相加 pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device) correct += pred.eq(target.long()).sum().item() print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) # 训练 for epoch in range(1, EPOCHS + 1): adjust_learning_rate(optimizer, epoch) train(model, DEVICE, train_loader, optimizer, epoch) val(model, DEVICE, test_loader) torch.save(model, 'model.pth')
测试
完整代码:
from __future__ import print_function, division from PIL import Image from torchvision import transforms import torch.nn.functional as F import torch import torch.nn as nn import torch.nn.parallel # 定义网络 class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3) self.max_pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(32, 64, 3) self.max_pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 64, 3) self.conv4 = nn.Conv2d(64, 64, 3) self.max_pool3 = nn.MaxPool2d(2) self.conv5 = nn.Conv2d(64, 128, 3) self.conv6 = nn.Conv2d(128, 128, 3) self.max_pool4 = nn.MaxPool2d(2) self.fc1 = nn.Linear(4608, 512) self.fc2 = nn.Linear(512, 1) def forward(self, x): in_size = x.size(0) x = self.conv1(x) x = F.relu(x) x = self.max_pool1(x) x = self.conv2(x) x = F.relu(x) x = self.max_pool2(x) x = self.conv3(x) x = F.relu(x) x = self.conv4(x) x = F.relu(x) x = self.max_pool3(x) x = self.conv5(x) x = F.relu(x) x = self.conv6(x) x = F.relu(x) x = self.max_pool4(x) # 展开 x = x.view(in_size, -1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.sigmoid(x) return x # 模型存储路径 model_save_path = 'model.pth' # ------------------------ 加载数据 --------------------------- # # Data augmentation and normalization for training # Just normalization for validation # 定义预训练变换 # 数据预处理 transform_test = transforms.Compose([ transforms.Resize(100), transforms.RandomVerticalFlip(), transforms.RandomCrop(50), transforms.RandomResizedCrop(150), transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) class_names = ['cat', 'dog'] # 这个顺序很重要,要和训练时候的类名顺序一致 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # ------------------------ 载入模型并且训练 --------------------------- # model = torch.load(model_save_path) model.eval() # print(model) image_PIL = Image.open('dog.12.jpg') # image_tensor = transform_test(image_PIL) # 以下语句等效于 image_tensor = torch.unsqueeze(image_tensor, 0) image_tensor.unsqueeze_(0) # 没有这句话会报错 image_tensor = image_tensor.to(device) out = model(image_tensor) pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in out]).to(device) print(class_names[pred])
运行结果:
查看更多关于Pytorch自定义模型实现猫狗分类的详细内容...
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://haodehen.cn/did126294