看到代码里面有这个
1 class ResNeXt101(nn.Module): 2 def __init__(self): 3 super(ResNeXt101, self).__init__() 4 net = resnext101() # print(os.getcwd(), net) 5 net = l编程客栈ist(net.children()) # net.children()得到resneXt 的表层网络 # for i, value in enumerate(net): http://HdhCmsTestcppcns测试数据 # print(i, value) 6 self.layer0 = nn.Sequential(net[:3]) # 将前三层打包0, 1, 2两层 print(self.layer0) 7 self.layer1 = nn.Sequential(*net[3: 5]) # 将3, 4两层打包 8 self.layer2 = net[5] 9 self.layer3 = net[6]
可以看到代码中的第六行(序号自己去掉,我打上去的) self.layer0 = nn.Sequential(net[:3]) 和 第七行 self.layer1 = nn.SequentiayJRRZrFBul(*net[3: 5]) 有一个 nn.Sequential(net[:3]) 和 nn.Sequential(*net[3: 5]) 今天不讲 nn.Sequent 编程客栈 ial() 用法,意义,作用因为我编程客栈也不咋明白。惊天就说 *net[3: 5] 这个东西为啥要带 “ * ” 当代码中不带 * 的时候,运行会出现以下问题
意思就是列表不是子类,就是说参数不对
net = list(net.children())
这一行代码是将模型的每一层取出来构建一个列表,自己试着打印就可以。大概的输出就是 [conv(),BatchNorm2d(), ReLU,MaxPool2d] 等等
总共是是个元素,和一般的列表不太一样。
当我们取 net[:3] 的时候,传进去的参数是一个列表,但是我们用 *net[:3] 的时候传进去的是单个元素
list1 = ["conv", ("relu", "maxing"), ("relu", "maxing", 3), 3] list2 = [list1[:1]] list3 = [*list1[:1]] print("list2:{}, *list1[:2]:{}".format(list1[:1], *list1[:1]))
结果不带✳的是列表,带✳的是元素,所以 nn.Sequential(*net[3: 5]) 中的 *net[3: 5] 就是给 nn.Sequential() 这个容器中传入多个层。
到此这篇关于pytorch中的nn.Sequential(*net[3: 5])是啥意思的文章就介绍到这了,更多相关pytorch nn.Sequential(*net[3: 5])内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
查看更多关于浅谈pytorch中的nn.Sequential(*net[3: 5])是啥意思的详细内容...