import torchfrom torch.autograd import Variablefrom torchvision import transformsfrom torch.utils.data import Dataset, DataLoaderfrom PIL import Image
root = "/home/zlab/zhangshun/torch1/data_et/"# -----------------ready the dataset--------------------------def default_loader(path):
return Image.open(path).convert('RGB')
class MyDataset (Dataset):
# 构造函数带有默认参数
def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
fh = open(txt, 'r')
imgs = []
for line in fh:
# 移除字符串首尾的换行符
# 删除末尾空
# 以空格为分隔符 将字符串分成
line = line.strip('\n')
line = line.rstrip()
words = line.split()
imgs.append((words[0], int(words[1])))#imgs中包含有图像路径和标签
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = loader def __getitem__(self, index):
fn, label = self.imgs[index]
#调用定义的loader方法
img = self.loader(fn)
if self.transform is not None:
img = self.transform(img)
return img, label def __len__(self):
return len(self.imgs)train_data = MyDataset(txt=root + 'train.txt', transform=transforms.ToTensor())test_data = MyDataset(txt=root + 'test.txt', transform=transforms.ToTensor())#train_data 和test_data包含多有的训练与测试数据,调用DataLoader批量加载train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)test_loader = DataLoader(dataset=test_data, batch_size=64)from torchvision import transformsfrom torch.utils.data import Dataset, DataLoaderfrom PIL import Image
root = "/home/zlab/zhangshun/torch1/data_et/"# -----------------ready the dataset--------------------------def default_loader(path):
return Image.open(path).convert('RGB')class MyDataset(Dataset):
# 构造函数带有默认参数
def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
fh = open(txt, 'r')
imgs = []
for line in fh:
line = line.strip('\n')
line = line.rstrip()
words = line.split()
imgs.append((words[0], int(words[1]))) # imgs中包含有图像路径和标签
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = loader def __getitem__(self, index):
fn, label = self.imgs[index]
# 调用定义的loader方法
img = self.loader(fn)
if self.transform is not None:
img = self.transform(img)
return img, label def __len__(self):
return len(self.imgs)
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor()])train_data = MyDataset(txt=root + 'train.txt', transform=transform)test_data = MyDataset(txt=root + 'test.txt', transform=transform)# train_data 和test_data包含多有的训练与测试数据,调用DataLoader批量加载train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)test_loader = DataLoader(dataset=test_data, batch_size=64)使用ImageFolder
import osfrom torch.utils.data import DataLoaderfrom torchvision import datasets, transforms
TRAIN_DIR = 'train'VALIDATION_DIR = 'valid'MEAN_RGB = (0.485, 0.456, 0.406)VAR_RGB = (0.229, 0.224, 0.225)transform_train = transforms.Compose([
transforms.RandomSizedCrop(224, scale=(0.2, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(MEAN_RGB, VAR_RGB),])transform_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(MEAN_RGB, VAR_RGB),])def get_imagenet_dataset(batch_size, dataset_root='./dataset/imagenet/', dataset_tpye='train'):
if dataset_tpye == 'train':
train_dataset_root = os.path.join(dataset_root, TRAIN_DIR)
trainset = datasets.ImageFolder(root=train_dataset_root, transform=transform_train)
trainloader = DataLoader(trainset,
batch_size=batch_size,
shuffle=True,
num_workers=8,
pin_memory=True,
drop_last=False)
print('Succeed to init ImageNet train DataLoader!')
return trainloader elif dataset_tpye == 'val' or dataset_tpye == 'valid':
val_dataset_root = os.path.join(dataset_root, VALIDATION_DIR)
valset = datasets.ImageFolder(root=val_dataset_root, transform=transform_test)
valloader = DataLoader(valset,
batch_size=batch_size,
shuffle=False,
num_workers=8,
pin_memory=False,
drop_last=False)
print('Succeed to init ImageNet val DataLoader!')
return valloader else:
raise Exception('IMAGENET DataLoader: Unknown dataset type -- %s' % dataset_tpye)
查看更多关于pytorch加载自己的数据集进阶的详细内容...
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://haodehen.cn/did126945