目录
Feature maps Why not Linear 335k or 1.3MB em... Receptive Field Fully connnected Partial connected Locally connected Rethink Linear layer Fully VS Lovally Weight sharing Why call Convolution? 2D Convolution Convolution in Computer Vision CNN on feature maps
Feature maps
单通道rgb三通道
rgb三通道合成
数字2的卷积成像图
Why not Linear
4 Layers: [784, 256, 256, 256, 10]
335k or 1.3MB
em...
486 PC + AT&T DSP32C
256KB 66MhzBatch X
Gradient Cache
etc.
Receptive Field
Fully connnected
Partial connected
Locally connected
Rethink Linear layer
Fully VS Lovally
Weight sharing
三阶张量的卷积
6 Layers
~60k parameters4 layers, 335k
Why call Convolution?
2D Convolution
\[y(t) = x(t)*h(t) = \int_{-\infty}^{\infty}x(\tau)h(t-\tau)d\tau \]
Convolution in Computer Vision
模糊化
边缘检测
CNN on feature maps
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://haodehen.cn/did127435