sklearn-生成随机数据
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties from sklearn import datasets %matplotlib inline font = FontProperties(fname='/Library/Fonts/Heiti.ttc')
多标签分类数据
X1, y1 = datasets.make_multilabel_classification( n_samples=1000, n_classes=4, n_features=2, random_state=1) datasets.make_multilabel_classification() plt.scatter(X1[:, 0], X1[:, 1], marker='*', c=y1) plt.show()
生成分类数据
import matplotlib.pyplot as plt %matplotlib inline plt.figure(figsize=(10, 10)) plt.subplot(221) plt.title("One informative feature, one cluster per class", fontsize=12) X1, y1 = datasets.make_classification(n_samples=1000, random_state=1, n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='*', c=y1) plt.subplot(222) plt.title("Two informative features, one cluster per class", fontsize=12) X1, y1 = datasets.make_classification(n_samples=1000, random_state=1, n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='*', c=y1) plt.subplot(223) plt.title("Two informative features, two clusters per class", fontsize=12) X1, y1 = datasets.make_classification( n_samples=1000, random_state=1, n_features=2, n_redundant=0, n_informative=2) plt.scatter(X1[:, 0], X1[:, 1], marker='*', c=y1) plt.subplot(224) plt.title("Multi-class, two informative features, one cluster", fontsize=12) X1, y1 = datasets.make_classification(n_samples=1000, random_state=1, n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, n_classes=4) plt.scatter(X1[:, 0], X1[:, 1], marker='*', c=y1) plt.show()
图像数据集
# 图像数据集 china = datasets.load_sample_image('china.jpg') plt.axis('off') plt.title('中国颐和园图像', fontproperties=font, fontsize=20) plt.imshow(china) plt.show()
查看更多关于Python之机器学习-sklearn生成随机数据的详细内容...
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://haodehen.cn/did127451