数字图像处理——高斯滤波器【像素级别处理】(python)
文章目录
数字图像处理——高斯滤波器【像素级别处理】(python) 简介 代码实现
简介
高斯滤波通常用它来减少图像噪声以及降低细节层次。这种模糊技术生成的图像,其视觉效果就像是经过一个半透明屏幕在观察图像,这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同。高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果.从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积。由于正态分布又叫作“高斯分布”,所以这项技术就叫作高斯模糊。图像与圆形方框模糊做卷积将会生成更加精确的焦外成像效果。由于高斯函数的傅立叶变换是另外一个高斯函数,所以高斯模糊对于图像来说就是一个低通滤波器。
代码实现
import cv2import numpy as npimport matplotlib.pyplot as plt img = cv2.imread('Fig0340.tif') # 测试图片H = img.shape[0]W = img.shape[1]# 产生5*5的Gaussian smoothing filter# Σ=3,h(x,y)=e^((x^2+y^2)/(2*Σ*Σ))h = np.zeros((5, 5)) # 高斯模板for i in range(5):for j in range(5):x = i - 2y = j - 2h[i, j] = np.power(np.e, -(x * x + y * y) / 18)h /= np.sum(h) # 归一化处理spanImg = np.zeros((H + 4, W + 4, 3), np.uint8) # 5*5扩充后的图像for i in range(H):for j in range(W):spanImg[i + 2, j + 2] = img[i, j]blurImg = np.zeros((H, W, 3), np.uint8) # 高斯模糊化之后的图像for i in range(H):for j in range(W):pix = 0for x in range(5):for y in range(5):pix += h[x, y] * spanImg[i + x, j + y, 0]blurImg[i, j, 0] = round(pix)blurImg[i, j, 1] = blurImg[i, j, 0]blurImg[i, j, 2] = blurImg[i, j, 0]plt.subplot(1, 2, 1)plt.title('original image')plt.imshow(img)plt.axis('off')plt.subplot(1, 2, 2)plt.title('blur image')plt.imshow(blurImg)plt.axis('off')plt.show()
查看更多关于数字图像处理——高斯滤波器【像素级别处理】(python)的详细内容...
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://haodehen.cn/did127599