数字图像处理——非锐化屏蔽与高提升滤波【像素级别处理】(python)
文章目录
数字图像处理——非锐化屏蔽与高提升滤波【像素级别处理】(python) 介绍 介绍 非锐化屏蔽 高提升滤波 代码实现
非锐化屏蔽
介绍
其中非锐化屏蔽是指在原图像中减去一个经过锐化的图层
其步骤为:
模糊原图像 原图像减去模糊图像(差值为模版) 把模版加到原图像上令 f ‾ ( x , y ) \overline{f}(x,y) f(x,y)为模糊图像 首先我们可以得到模版 g m a s k ( x , y ) = f ( x , y ) − f ‾ ( x , y ) g_{mask}(x,y)=f(x,y)-\overline{f}(x,y) gmask(x,y)=f(x,y)−f(x,y) 然后在原图像加上模版的一个权重k(k>0): g ( x , y ) = f ( x , y ) + k ∗ f ‾ ( x , y ) g(x,y)=f(x,y)+k*\overline{f}(x,y) g(x,y)=f(x,y)+k∗f(x,y) 当k=1时,所得的为非锐化屏蔽
高提升滤波
介绍
其中非锐化屏蔽是指在原图像中加上一个经过锐化的图层
其步骤为:
模糊原图像 原图像减去模糊图像(差值为模版) 把模版加到原图像上令 f ‾ ( x , y ) \overline{f}(x,y) f(x,y)为模糊图像 首先我们可以得到模版 g m a s k ( x , y ) = f ( x , y ) − f ‾ ( x , y ) g_{mask}(x,y)=f(x,y)-\overline{f}(x,y) gmask(x,y)=f(x,y)−f(x,y) 然后在原图像加上模版的一个权重k(k>0): g ( x , y ) = f ( x , y ) + k ∗ f ‾ ( x , y ) g(x,y)=f(x,y)+k*\overline{f}(x,y) g(x,y)=f(x,y)+k∗f(x,y) 当k>1时,为高提升滤波
代码实现
import cv2import numpy as npimport matplotlib.pyplot as plt img = cv2.imread('Fig0340.tif') # 测试图片H = img.shape[0]W = img.shape[1]# 产生5*5的Gaussian smoothing filter# Σ=3,h(x,y)=e^((x^2+y^2)/(2*Σ*Σ))h = np.zeros((5, 5)) # 高斯模板for i in range(5):for j in range(5):x = i - 2y = j - 2h[i, j] = np.power(np.e, -(x * x + y * y) / 18)print(h)print(sum(h))print(sum(sum(h)))h /= np.sum(h) # 归一化处理print('----')print(h)print(sum(h))print(sum(sum(h)))spanImg = np.zeros((H + 4, W + 4, 3), np.uint8) # 5*5扩充后的图像# print('----------')# print(spanImg)for i in range(H):for j in range(W):spanImg[i + 2, j + 2] = img[i, j]blurImg = np.zeros((H, W, 3), np.uint8) # 高斯模糊化之后的图像for i in range(H):for j in range(W):pix = 0for x in range(5):for y in range(5):pix += h[x, y] * spanImg[i + x, j + y, 0]blurImg[i, j, 0] = round(pix)blurImg[i, j, 1] = blurImg[i, j, 0]blurImg[i, j, 2] = blurImg[i, j, 0]# Unsharp maskUmPix = np.zeros((H, W), np.int32)max = 0min = 255for i in range(H):for j in range(W):UmPix[i, j] = int(img[i, j, 0]) - blurImg[i, j, 0]if UmPix[i, j] > max:max = UmPix[i, j]if UmPix[i, j] < min:min = UmPix[i, j]t = 0if max > min:t = 255 / (max - min)# 归一化的掩蔽图像UmImg = np.zeros((H, W, 3), np.uint8)for i in range(H):for j in range(W):UmImg[i, j, 0] = round((UmPix[i, j] - min) * t)UmImg[i, j, 1] = UmImg[i, j, 0]UmImg[i, j, 2] = UmImg[i, j, 0]# 压缩至0-255之间的加入钝化掩蔽的图像simgk = np.zeros((H, W, 3), np.uint8)spixk = np.zeros((H, W), np.int32)# 加入钝化掩蔽之后的图像imgk = np.zeros((H, W, 3), np.uint8)pixk = np.zeros((H, W), np.int32)# 高提升滤波后图像imgk2 = np.zeros((H, W, 3), np.uint8)pixk2 = np.zeros((H, W), np.int32)# 这里用到了截断来处理,并没有用scale来处理for i in range(H):for j in range(W):pixk[i, j] = img[i, j, 0] + UmPix[i, j]spixk[i, j] = pixk[i, j]if pixk[i, j] > 255:pixk[i, j] = 255if pixk[i, j] < 0:pixk[i, j] = 0pixk2[i, j] = round(img[i, j, 0] + 4.5 * UmPix[i, j])if pixk2[i, j] > 255:pixk2[i, j] = 255if pixk2[i, j] < 0:pixk2[i, j] = 0imgk[i, j, 0] = pixk[i, j]imgk[i, j, 1] = imgk[i, j, 0]imgk[i, j, 2] = imgk[i, j, 0]imgk2[i, j, 0] = pixk2[i, j]imgk2[i, j, 1] = imgk2[i, j, 0]imgk2[i, j, 2] = imgk2[i, j, 0]# 下面处理压缩0-255之间的图片max = 0min = 255for i in range(H):for j in range(W):if spixk[i, j] > max:max = spixk[i, j]if spixk[i, j] < min:min = spixk[i, j]sk = 0if max > min:sk = 255 / (max - min)for i in range(H):for j in range(W):simgk[i, j, 0] = round((spixk[i, j] - min) * sk)simgk[i, j, 1] = simgk[i, j, 0]simgk[i, j, 2] = simgk[i, j, 0]# 原图plt.subplot(3, 2, 1)plt.axis('off')plt.title('Original Image')plt.imshow(img)# 高斯平滑滤波模糊化的图像plt.subplot(3, 2, 2)plt.axis('off')plt.title('Gaussian Smooth Filter Blurring')plt.imshow(blurImg)# 像素拉伸之后的差值图像plt.subplot(3, 2, 3)plt.axis('off')plt.title('Scaled Unsharped mask(original - blur)')plt.imshow(UmImg)# 锐化并压缩的图像plt.subplot(3, 2, 4)plt.axis('off')plt.title('Sharpened Image(scaled to 0-255)')plt.imshow(simgk)# 加上钝化mask之后的锐化图像plt.subplot(3, 2, 5)plt.axis('off')plt.title('Sharpened Image(clipped to 0-255)')plt.imshow(imgk)# 设置系数为4.5之后的锐化图像plt.subplot(3, 2, 6)plt.axis('off')plt.title('Highboostted Image(k=4.5,clipped)')plt.imshow(imgk2)plt.show()
查看更多关于数字图像处理——非锐化屏蔽与高提升滤波【像素级别处理】(python)的详细内容...