背景分离(BS)是一种通过使用静态相机来生成前景掩码(即包含属于场景中的移动对象像素的二进制图像)的常用技术。 顾名思义,BS计算前景掩码,在当前帧与背景模型之间执行减法运算,其中包含场景的静态部分,或者更一般而言,考虑到所观察场景的特征,可以将其视为背景的所有内容。
背景建模包括两个主要步骤: 1.背景初始化; 2.背景更新。 第一步,计算背景的初始模型,而在第二步中,更新模型以适应场景中可能的变化。 在本教程中,我们将学习如何使用OpenCV中的BS。 目标 在本教程中,您将学习如何: 1.使用cv::VideoCapture从视频或图像序列中读取数据; 2.通过使用cv::BackgroundSubtractor类创建和更新背景类; 3.通过使用cv::imshow获取并显示前景蒙版。 代码 在下面,您可以找到源代码。我们将让用户选择处理视频文件或图像序列。在此示例中,我们将使用cv::BackgroundSubtractorMOG2生成前景掩码。 结果和输入数据将显示在屏幕上。
from future import print_function import cv2 as cv import argparse parser = argparse.ArgumentParser(description='This program shows how to use background subtraction methods provided by \ OpenCV. You can process both videos and images.') parser.add_argument('--input', type=str, help='Path to a video or a sequence of image.', default='vtest.avi') parser.add_argument('--algo', type=str, help='Background subtraction method (KNN, MOG2).', default='MOG2') args = parser.parse_args() if args.algo == 'MOG2': backSub = cv.createBackgroundSubtractorMOG2() else: backSub = cv.createBackgroundSubtractorKNN() capture = cv.VideoCapture(cv.samples.findFileOrKeep(args.input)) if not capture.isOpened: print('Unable to open: ' + args.input) exit(0) while True: ret, frame = capture.read() if frame is None: break
fgMask = backSub.apply(frame) cv.rectangle(frame, (10, 2), (100,20), (255,255,255), -1) cv.putText(frame, str(capture.get(cv.CAP_PROP_POS_FRAMES)), (15, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5 , (0,0,0)) cv.imshow('Frame', frame) cv.imshow('FG Mask', fgMask) keyboard = cv.waitKey(30) if keyboard == 'q' or keyboard == 27: break
解释 我们讨论上面代码的主要部分: * 一个cv::BackgroundSubtractor对象将用于生成前景掩码。在此示例中,使用了默认参数,但是也可以在create函数中声明特定的参数。 #创建背景分离对象
if args.algo == 'MOG2': backSub = cv.createBackgroundSubtractorMOG2() else: backSub = cv.createBackgroundSubtractorKNN()
* 一个cv::VideoCapture对象用于读取输入视频或输入图像序列。
capture = cv.VideoCapture(cv.samples.findFileOrKeep(args.input)) if not capture.isOpened: print('Unable to open: ' + args.input) exit(0)
* 每帧都用于计算前景掩码和更新背景。如果要更改用于更新背景模型的学习率,可以通过将参数传递给apply方法来设置特定的学习率。 #更新背景模型
fgMask = backSub.apply(frame)
* 当前帧号可以从cv::VideoCapture对象中提取,并标记在当前帧的左上角。白色矩形用于突出显示黑色的帧编号。 #获取帧号并将其写入当前帧
cv.rectangle(frame, (10, 2), (100,20), (255,255,255), -1) cv.putText(frame, str(capture.get(cv.CAP_PROP_POS_FRAMES)), (15, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5 , (0,0,0))
* 我们准备显示当前的输入框和结果。 #展示当前帧和背景掩码
cv.imshow('Frame', frame) cv.imshow('FG Mask', fgMask)
**结果** 对于vtest.avi视频,适用以下框架:  MOG2方法的程序输出如下所示(检测到灰色区域有阴影):  对于KNN方法,程序的输出将如下所示(检测到灰色区域的阴影):  **参考** Background Models Challenge (BMC) website A Benchmark Dataset for Foreground/Background Extraction
查看更多关于OpenCV系列之如何使用背景分离方法 | 四十六的详细内容...