好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

Java8 Stream 流常用方法合集

一、概述

Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。使用Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。也可以使用 Stream API 来并行执行操作。

简而言之,Stream API 提供了一种高效且易于使用的处理数据的方式。

特点:

不是数据结构,不会保存数据。 不会修改原来的数据源,它会将操作后的数据保存到另外一个对象中。(保留意见:毕竟peek方法可以修改流中元素) 惰性求值,流在中间处理过程中,只是对操作进行了记录,并不会立即执行,需要等到执行终止操作的时候才会进行实际的计算。

二、分类

无状态:  指元素的处理不受之前元素的影响; 有状态:  指该操作只有拿到所有元素之后才能继续下去。 非短路操作:  指必须处理所有元素才能得到最终结果; 短路操作:  指遇到某些符合条件的元素就可以得到最终结果,如 A || B,只要A为true,则无需判断B的结果。

三、具体用法

1. 流的常用创建方法

1.1 使用? ?Collection? ?下的 ? ?stream() ? ?和 ? ?parallelStream() ? ?方法

?

1

2

3

List<String> list = new ArrayList<>();

Stream<String> stream = list.stream(); //获取一个顺序流

Stream<String> parallelStream = list.parallelStream(); //获取一个并行流

1.2 使用Arrays 中的? ?stream()? ?方法,将数组转成流

?

1

2

Integer[] nums = new Integer[ 10 ];

Stream<Integer> stream = Arrays.stream(nums);

1.3 使用Stream中的静态方法:? ?of()? ?、? ?iterate()? ?、? ?generate()? ?

?

1

2

3

4

5

6

7

Stream<Integer> stream = Stream.of( 1 , 2 , 3 , 4 , 5 , 6 );

 

Stream<Integer> stream2 = Stream.iterate( 0 , (x) -> x + 2 ).limit( 6 );

stream2.forEach(System.out::println); // 0 2 4 6 8 10

 

Stream<Double> stream3 = Stream.generate(Math::random).limit( 2 );

stream3.forEach(System.out::println);

1.4 使用 ? ?BufferedReader.lines() ? ?方法,将每行内容转成流

?

1

2

3

BufferedReader reader = new BufferedReader( new FileReader( "F:\\test_stream.txt" ));

Stream<String> lineStream = reader.lines();

lineStream.forEach(System.out::println);

1.5 使用 ? ?Pattern.splitAsStream() ? ?方法,将字符串分隔成流

?

1

2

3

Pattern pattern = Pattern测试数据pile( "," );

Stream<String> stringStream = pattern.splitAsStream( "a,b,c,d" );

stringStream.forEach(System.out::println);

2. 流的中间操作

2.1 筛选与切片

filter :过滤流中的某些元素 limit(n) :获取n个元素 skip(n) :跳过n元素,配合 limit(n) 可实现分页 distinct :通过流中元素的  hashCode()  和  equals()  去除重复元素

?

1

2

3

4

5

6

7

Stream<Integer> stream = Stream.of( 6 , 4 , 6 , 7 , 3 , 9 , 8 , 10 , 12 , 14 , 14 );

 

Stream<Integer> newStream = stream.filter(s -> s > 5 ) //6 6 7 9 8 10 12 14 14

.distinct() //6 7 9 8 10 12 14

.skip( 2 ) //9 8 10 12 14

.limit( 2 ); //9 8

newStream.forEach(System.out::println);

2.2 映射

map: 接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。 flatMap: 接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

List<String> list = Arrays.asList( "a,b,c" , "1,2,3" );

 

//将每个元素转成一个新的且不带逗号的元素

Stream<String> s1 = list.stream().map(s -> s.replaceAll( "," , "" ));

s1.forEach(System.out::println); // abc 123

 

Stream<String> s3 = list.stream().flatMap(s -> {

//将每个元素转换成一个stream

String[] split = s.split( "," );

Stream<String> s2 = Arrays.stream(split);

return s2;

});

s3.forEach(System.out::println); // a b c 1 2 3

2.3 排序

? ?sorted()? ?:自然排序,流中元素需实现Comparable接口 ? ?sorted(Comparator com)? ?:定制排序,自定义Comparator排序器

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

List<String> list = Arrays.asList( "aa" , "ff" , "dd" );

//String 类自身已实现Compareable接口

list.stream().sorted().forEach(System.out::println); // aa dd ff

 

Student s1 = new Student( "aa" , 10 );

Student s2 = new Student( "bb" , 20 );

Student s3 = new Student( "aa" , 30 );

Student s4 = new Student( "dd" , 40 );

List<Student> studentList = Arrays.asList(s1, s2, s3, s4);

 

//自定义排序:先按姓名升序,姓名相同则按年龄升序

studentList.stream().sorted(

(o1, o2) -> {

if (o1.getName().equals(o2.getName())) {

return o1.getAge() - o2.getAge();

} else {

return o1.getName()测试数据pareTo(o2.getName());

}

}

).forEach(System.out::println);

2.4 消费

? ?peek? ?:如同于map,能得到流中的每一个元素。但map接收的是一个Function表达式,有返回值;而peek接收的是Consumer表达式,没有返回值。

?

1

2

3

4

5

6

7

8

9

10

11

Student s1 = new Student( "aa" , 10 );

Student s2 = new Student( "bb" , 20 );

List<Student> studentList = Arrays.asList(s1, s2);

 

studentList.stream()

.peek(o -> o.setAge( 100 ))

.forEach(System.out::println);

 

//结果:

Student{name= 'aa' , age= 100 }

Student{name= 'bb' , age= 100 }

3. 流的终止操作

3.1 匹配、聚合操作

? ?allMatch? ?:接收一个 Predicate 函数,当流中每个元素都符合该断言时才返回true,否则返回false ? ?noneMatch? ?:接收一个 Predicate 函数,当流中每个元素都不符合该断言时才返回true,否则返回false ? ?anyMatch? ?:接收一个 Predicate 函数,只要流中有一个元素满足该断言则返回true,否则返回false ? ?findFirst? ?:返回流中第一个元素 ? ?findAny? ?:返回流中的任意元素 ? ?count? ?:返回流中元素的总个数 ? ?max? ?:返回流中元素最大值 ? ?min? ?:返回流中元素最小值

?

1

2

3

4

5

6

7

8

9

10

11

12

List<Integer> list = Arrays.asList( 1 , 2 , 3 , 4 , 5 );

 

boolean allMatch = list.stream().allMatch(e -> e > 10 ); //false

boolean noneMatch = list.stream().noneMatch(e -> e > 10 ); //true

boolean anyMatch = list.stream().anyMatch(e -> e > 4 ); //true

 

Integer findFirst = list.stream().findFirst().get(); //1

Integer findAny = list.stream().findAny().get(); //1

 

long count = list.stream().count(); //5

Integer max = list.stream().max(Integer::compareTo).get(); //5

Integer min = list.stream().min(Integer::compareTo).get(); //1

3.2 规约操作

Optional<T> reduce(BinaryOperator<T> accumulator) :第一次执行时,accumulator函数的第一个参数为流中的第一个元素,第二个参数为流中元素的第二个元素;第二次执行时,第一个参数为第一次函数执行的结果,第二个参数为流中的第三个元素;依次类推。 T reduce(T identity, BinaryOperator<T> accumulator) :流程跟上面一样,只是第一次执行时, accumulator 函数的第一个参数为identity,而第二个参数为流中的第一个元素。 <U> U reduce(U identity,BiFunction<U, ? super T, U> accumulator,BinaryOperator<U> combiner) :在串行流(stream)中,该方法跟第二个方法一样,即第三个参数combiner不会起作用。在并行流(parallelStream)中,我们知道流被 fork join 出多个线程进行执行,此时每个线程的执行流程就跟第二个方法 reduce(identity,accumulator) 一样,而第三个参数combiner函数,则是将每个线程的执行结果当成一个新的流,然后使用第一个方法 reduce(accumulator) 流程进行规约。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

//经过测试,当元素个数小于24时,并行时线程数等于元素个数,当大于等于24时,并行时线程数为16

List<Integer> list = Arrays.asList( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 );

 

Integer v = list.stream().reduce((x1, x2) -> x1 + x2).get();

System.out.println(v); // 300

 

Integer v1 = list.stream().reduce( 10 , (x1, x2) -> x1 + x2);

System.out.println(v1); //310

 

Integer v2 = list.stream().reduce( 0 ,

(x1, x2) -> {

System.out.println( "stream accumulator: x1:" + x1 + " x2:" + x2);

return x1 - x2;

},

(x1, x2) -> {

System.out.println( "stream combiner: x1:" + x1 + " x2:" + x2);

return x1 * x2;

});

System.out.println(v2); // -300

 

Integer v3 = list.parallelStream().reduce( 0 ,

(x1, x2) -> {

System.out.println( "parallelStream accumulator: x1:" + x1 + " x2:" + x2);

return x1 - x2;

},

(x1, x2) -> {

System.out.println( "parallelStream combiner: x1:" + x1 + " x2:" + x2);

return x1 * x2;

});

System.out.println(v3); //197474048

3.3 收集操作

? ?collect? ?:接收一个Collector实例,将流中元素收集成另外一个数据结构。

? ?Collector<T, A, R>? ? 是一个接口,有以下5个抽象方法:

? ?Supplier<A> supplier()? ?:创建一个结果容器A ? ?BiConsumer<A, T> accumulator()? ?:消费型接口,第一个参数为容器A,第二个参数为流中元素T。 ? ?BinaryOperator<A> combiner()? ?:函数接口,该参数的作用跟上一个方法(reduce)中的combiner参数一样,将并行流中各个子进程的运行结果(accumulator函数操作后的容器A)进行合并。 ? ?Function<A, R> finisher()? ?:函数式接口,参数为:容器A,返回类型为:collect方法最终想要的结果R。 ? ?Set<Characteristics> characteristics()? ?:返回一个不可变的Set集合,用来表明该Collector的特征。有以下三个特征: ? ?CONCURRENT? ?:表示此收集器支持并发。(官方文档还有其他描述,暂时没去探索,故不作过多翻译) ? ?UNORDERED? ?:表示该收集操作不会保留流中元素原有的顺序。 ? ?IDENTITY_FINISH? ?:表示finisher参数只是标识而已,可忽略。

3.3.1 ? ?Collector? ? 工具库:? ?Collectors? ?

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Student s1 = new Student( "aa" , 10 , 1 );

Student s2 = new Student( "bb" , 20 , 2 );

Student s3 = new Student( "cc" , 10 , 3 );

List<Student> list = Arrays.asList(s1, s2, s3);

 

//装成list

List<Integer> ageList = list.stream().map(Student::getAge).collect(Collectors.toList()); // [10, 20, 10]

 

//转成set

Set<Integer> ageSet = list.stream().map(Student::getAge).collect(Collectors.toSet()); // [20, 10]

 

//转成map,注:key不能相同,否则报错

Map<String, Integer> studentMap = list.stream().collect(Collectors.toMap(Student::getName, Student::getAge)); // {cc=10, bb=20, aa=10}

 

//字符串分隔符连接

String joinName = list.stream().map(Student::getName).collect(Collectors.joining( "," , "(" , ")" )); // (aa,bb,cc)

 

//聚合操作

//1.学生总数

Long count = list.stream().collect(Collectors.counting()); // 3

//2.最大年龄 (最小的minBy同理)

Integer maxAge = list.stream().map(Student::getAge).collect(Collectors.maxBy(Integer::compare)).get(); // 20

//3.所有人的年龄

Integer sumAge = list.stream().collect(Collectors.summingInt(Student::getAge)); // 40

//4.平均年龄

Double averageAge = list.stream().collect(Collectors.averagingDouble(Student::getAge)); // 13.333333333333334

// 带上以上所有方法

DoubleSummaryStatistics statistics = list.stream().collect(Collectors.summarizingDouble(Student::getAge));

System.out.println( "count:" + statistics.getCount() + ",max:" + statistics.getMax() + ",sum:" + statistics.getSum() + ",average:" + statistics.getAverage());

 

//分组

Map<Integer, List<Student>> ageMap = list.stream().collect(Collectors.groupingBy(Student::getAge));

//多重分组,先根据类型分再根据年龄分

Map<Integer, Map<Integer, List<Student>>> typeAgeMap = list.stream().collect(Collectors.groupingBy(Student::getType, Collectors.groupingBy(Student::getAge)));

 

//分区

//分成两部分,一部分大于10岁,一部分小于等于10岁

Map<Boolean, List<Student>> partMap = list.stream().collect(Collectors.partitioningBy(v -> v.getAge() > 10 ));

 

//规约

Integer allAge = list.stream().map(Student::getAge).collect(Collectors.reducing(Integer::sum)).get(); //40

3.3.2 ? ?Collectors.toList() ? ?解析

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

//toList 源码

public static <T> Collector<T, ?, List<T>> toList() {

return new CollectorImpl<>((Supplier<List<T>>) ArrayList:: new , List::add,

(left, right) -> {

left.addAll(right);

return left;

}, CH_ID);

}

 

//为了更好地理解,我们转化一下源码中的lambda表达式

public <T> Collector<T, ?, List<T>> toList() {

Supplier<List<T>> supplier = () -> new ArrayList();

BiConsumer<List<T>, T> accumulator = (list, t) -> list.add(t);

BinaryOperator<List<T>> combiner = (list1, list2) -> {

list1.addAll(list2);

return list1;

};

Function<List<T>, List<T>> finisher = (list) -> list;

Set<Collector.Characteristics> characteristics = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.IDENTITY_FINISH));

 

return new Collector<T, List<T>, List<T>>() {

@Override

public Supplier supplier() {

return supplier;

}

 

@Override

public BiConsumer accumulator() {

return accumulator;

}

 

@Override

public BinaryOperator combiner() {

return combiner;

}

 

@Override

public Function finisher() {

return finisher;

}

 

@Override

public Set<Characteristics> characteristics() {

return characteristics;

}

};

 

}

到此这篇关于 Java8 Stream 流常用方法合集的文章就介绍到这了,更多相关 Java8 Stream 流 内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

原文链接:https://blog.51cto测试数据/u_15430445/5203512

查看更多关于Java8 Stream 流常用方法合集的详细内容...

  阅读:23次