很多站长朋友们都不太清楚phpconsul,今天小编就来给大家整理phpconsul,希望对各位有所帮助,具体内容如下:
本文目录一览: 1、 你用过哪些好用的开源软件? 2、 架构高可用高并发系统的设计原则 3、 【实践】2.Prometheus命令和配置详解 你用过哪些好用的开源软件?我推荐一个基于spring cloud 外延的一个开源项目,主要是针对企业信息化方向的,做得比较不错能开源,支持商用。
里面实现了 SaaS(用户与租户的多对多关系)、统一多模式登陆、在线表单配置、在线列表页配置,在线流程配置,在线图表配置等等。
1、渐进式 JavaScript 框架 Vue.js
官网:
2、高性能Java RPC框架 Dubbo
官网:
简介:Apache Dubbo (incubating) |ˈdʌbəʊ| 是一款高性能、轻量级的开源Java RPC框架,它提供了三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现。
3、经典模块化前端框架 Layui
官网:
简介:Layui由职业前端倾情打造,面向所有层次的前后端开发者,零门槛开箱即用的前端UI解决方案。
4、JavaScript 可视化图表库 ECharts
官网:
简介:ECharts,一个使用 JavaScript 实现的开源可视化库,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器(IE8/9/10/11,Chrome,Firefox,Safari等),底层依赖轻量级的矢量图形库 ZRender,提供直观,交互丰富,可高度个性化定制的数据可视化图表。
5、基于 Node.js 的前端代码检查工具 FECS
官网:
简介:FECS 是基于 Node.js 的前端代码风格工具套件,包含对 JavaScript、CSS 与 HTML 的检查、修复及格式化。
6、开源项目管理软件 禅道
官网:
简介:禅道是第一款国产的开源项目管理软件,她的核心管理思想基于敏捷方法scrum,内置了产品管理和项目管理,同时又根据国内研发现状补充了测试管理、计划管理、发布管理、文档管理、事务管理等功能,在一个软件中就可以将软件研发中的需求、任务、bug、用例、计划、发布等要素有序的跟踪管理起来,完整地覆盖了项目管理的核心流程。我们团队就在使用这款项目管理软件,感兴趣的小伙伴也可以试用下哦。
7、JAVA 极速WEB+ORM框架 JFinal
官网:
简介:JFinal 是基于 Java 语言的极速 WEB + ORM 框架,其核心设计目标是开发迅速、代码量少、学习简单、功能强大、轻量级、易扩展、Restful。在拥有Java语言所有优势的同时再拥有ruby、python、php等动态语言的开发效率!为您节约更多时间,去陪恋人、家人和朋友 :) 。
以上为抛砖引玉,希望大家分享更多的开源软件,共同进步哦!
相比较,homeassistant 更强大,之前只有英文版,现在有中文版了。
docker,kafka,rabbitmq,redis,mysql,dubbo,consul,sqlite,vue,react,eshop还有啥?
freeradius,nginx,sphinxsearch。。
架构高可用高并发系统的设计原则通过学习《亿级流量网站架构核心技术》及《linux就该这么学》学习笔记及自己的感悟:架构设计之高可用高并发系统设计原则,架构设计包括墨菲定律、康威定律和二八定律三大定律,而系统设计包括高并发原则、高可用和业务设计原则等。
架构设计三大定律
墨菲定律 – 任何事没有表面看起来那么简单 – 所有的事都会比预计的时间长 – 可能出错的事情总会出错 – 担心某种事情发生,那么它就更有可能发生
康威定律 – 系统架构师公司组织架构的反映 – 按照业务闭环进行系统拆分/组织架构划分,实现闭环、高内聚、低耦合,减少沟通成本 – 如果沟通出现问题,应该考虑进行系统和组织架构的调整 – 适合时机进行系统拆分,不要一开始就吧系统、服务拆分拆的非常细,虽然闭环,但是每个人维护的系统多,维护成本高 – 微服务架构的理论基础 – 康威定律– 每个架构师都应该研究下康威定律
二八定律 – 80%的结果取决于20%的原因
系统设计遵循的原则
1.高并发原则
无状态
无状态应用,便于水平扩展
有状态配置可通过配置中心实现无状态
实践: Disconf、Yaconf、Zookpeer、Consul、Confd、Diamond、Xdiamond等
拆分
系统维度:按照系统功能、业务拆分,如购物车,结算,订单等
功能维度:对系统功能在做细粒度拆分
读写维度:根据读写比例特征拆分;读多,可考虑多级缓存;写多,可考虑分库分表
AOP维度: 根据访问特征,按照AOP进行拆分,比如商品详情页可分为CDN、页面渲染系统,CDN就是一个AOP系统
模块维度:对整体代码结构划分Web、Service、DAO
服务化
服务化演进: 进程内服务-单机远程服务-集群手动注册服务-自动注册和发现服务-服务的分组、隔离、路由-服务治理
考虑服务分组、隔离、限流、黑白名单、超时、重试机制、路由、故障补偿等
实践:利用Nginx、HaProxy、LVS等实现负载均衡,ZooKeeper、Consul等实现自动注册和发现服
消息队列
目的: 服务解耦(一对多消费)、异步处理、流量削峰缓冲等
大流量缓冲: 牺牲强一致性,保证最终一致性(案例:库存扣减,现在Redis中做扣减,记录扣减日志,通过后台进程将扣减日志应用到DB)
数据校对: 解决异步消息机制下消息丢失问题
数据异构
数据异构: 通过消息队列机制接收数据变更,原子化存储
数据闭环: 屏蔽多从数据来源,将数据异构存储,形成闭环
缓存银弹
用户层:
DNS缓存
浏览器DNS缓存
操作系统DNS缓存
本地DNS服务商缓存
DNS服务器缓存
客户端缓存
浏览器缓存(Expires、Cache-Control、Last-Modified、Etag)
App客户缓存(js/css/image…)
代理层:
CDN缓存(一般基于ATS、Varnish、Nginx、Squid等构建,边缘节点-二级节点-中心节点-源站)
接入层:
Opcache: 缓存PHP的Opcodes
Proxy_cache: 代理缓存,可以存储到/dev/shm或者SSD
FastCGI Cache
Nginx+Lua+Redis: 业务数据缓存
Nginx为例:
PHP为例:
应用层:
页面静态化
业务数据缓存(Redis/Memcached/本地文件等)
消息队列
数据层:
NoSQL: Redis、Memcache、SSDB等
MySQL: Innodb/MyISAM等Query Cache、Key Cache、Innodb Buffer Size等
系统层:
CPU : L1/L2/L3 Cache/NUMA
内存
磁盘:磁盘本身缓存、dirtyratio/dirtybackground_ratio、阵列卡本身缓存
并发化
2.高可用原则
降级
降级开关集中化管理:将开关配置信息推送到各个应用
可降级的多级读服务:如服务调用降级为只读本地缓存
开关前置化:如Nginx+lua(OpenResty)配置降级策略,引流流量;可基于此做灰度策略
业务降级:高并发下,保证核心功能,次要功能可由同步改为异步策略或屏蔽功能
限流
目的: 防止恶意请求攻击或超出系统峰值
实践:
恶意请求流量只访问到Cache
穿透后端应用的流量使用Nginx的limit处理
恶意IP使用Nginx Deny策略或者iptables拒绝
切流量
目的:屏蔽故障机器
实践:
DNS: 更改域名解析入口,如DNSPOD可以添加备用IP,正常IP故障时,会自主切换到备用地址;生效实践较慢
HttpDNS: 为了绕过运营商LocalDNS实现的精准流量调度
LVS/HaProxy/Nginx: 摘除故障节点
可回滚
发布版本失败时可随时快速回退到上一个稳定版本
3.业务设计原则
防重设计
幂等设计
流程定义
状态与状态机
后台系统操作可反馈
后台系统审批化
文档注释
备份
4.总结
先行规划和设计时有必要的,要对现有问题有方案,对未来有预案;欠下的技术债,迟早都是要还的。
本文作者为网易高级运维工程师
【实践】2.Prometheus命令和配置详解Prometheus配置方式有两种:
(1)命令行,用来配置不可变命令参数,主要是Prometheus运行参数,比如数据存储位置
(2)配置文件,用来配置Prometheus应用参数,比如数据采集,报警对接
不重启进程配置生效方式也有两种:
(1)对进程发送信号SIGHUP
(2)HTTP POST请求,需要开启--web.enable-lifecycle选项curl -X POST
配置文件格式是yaml格式,说明:
.yml或者.yaml 都是 yaml格式的文件,
yaml格式的好处: 和json交互比较容易
python/go/java/php 有yaml格式库,方便语言之间解析,并且这种格式存储的信息量很大。
命令行可用配置可通过prometheus -h来查看。
配置文件使用yml格式,配置文件中一级配置项如下,说明参考#备注内容。
配置文件中通用字段值格式
<boolean>: 布尔类型值为true和false
<scheme>: 协议方式包含http和https
原始配置文件内容:
全局默认的数据拉取间隔
全局默认的单次数据拉取超时,当报context deadline exceeded错误时需要在特定的job下配置该字段。
全局默认的规则(主要是报警规则)拉取间隔
该服务端在与其他系统对接所携带的标签
该字段配置与Alertmanager进行对接的配置
样例:
上面的配置中的 alert_relabel_configs 是指警报重新标记在发送到Alertmanager之前应用于警报。 它具有与目标重新标记相同的配置格式和操作,外部标签标记后应用警报重新标记,主要是针对集群配置。
这个设置的用途是确保具有不同外部label的HA对Prometheus服务端发送相同的警报信息。
Alertmanager 可以通过 static_configs 参数静态配置,也可以使用其中一种支持的服务发现机制动态发现,我们上面的配置是静态的单实例。
此外, relabel_configs 允许从发现的实体中选择 Alertmanager,并对使用的API路径提供高级修改,该路径通过 __alerts_path__ 标签公开。
完成以上配置后,重启Prometheus服务,用以加载生效,也可以使用热加载功能,使其配置生效。然后通过浏览器,访问 就可以看 inactive pending firing 三个状态,没有警报信息是因为我们还没有配置警报规则 rules 。
这里定义和prometheus集成的alertmanager插件,用于监控报警。后续会单独进行alertmanger插件的配置、配置说明、报警媒介以及route路由规则记录。
此项配置和 scrape_configs 字段中 relabel_configs 配置一样,用于对需要报警的数据进行过滤后发向 Alertmanager
说明
relabel-configs的配置允许你选择你想抓取的目标和这些目标的标签是什么。所以说如果你想要抓取这种类型的服务器而不是那种,可以使用relabel_configs
相比之下,metric_relabel_configs是发生在抓取之后,但在数据被插入存储系统之前使用。因此如果有些你想过滤的指标,或者来自抓取本身的指标(比如来自/metrics页面)你就可以使用metric_relabel_configs来处理。
该项目主要用来配置不同的 alertmanagers 服务,以及Prometheus服务和他们的链接参数。 alertmanagers 服务可以静态配置也可以使用服务发现配置。Prometheus以pushing 的方式向alertmanager传递数据。
alertmanager 服务配置和target配置一样,可用字段如下
这个主要是用来设置告警规则,基于设定什么指标进行报警(类似触发器trigger)。这里设定好规则以后,prometheus会根据全局global设定的evaluation_interval参数进行扫描加载,规则改动后会自动加载。其报警媒介和route路由由alertmanager插件实现。
样例:
"first_rules.yml"样例:
Prometheus 支持两种类型的 Rules ,可以对其进行配置,然后定期进行运算:recording rules 记录规则 与 alerting rules 警报规则,规则文件的计算频率与警报规则计算频率一致,都是通过全局配置中的 evaluation_interval 定义。
不论是recording rules还是alerting rules都要在组里面。
要在Prometheus中使用Rules规则,就必须创建一个包含必要规则语句的文件,并让Prometheus通过Prometheus配置中的rule_files字段加载该文件,前面我们已经讲过了。 其实语法都一样,除了 recording rules 中的收集的指标名称 record: <string> 字段配置方式略有不同,其他都是一样的。
配置范例:
recording rules 是提前设置好一个比较花费大量时间运算或经常运算的表达式,其结果保存成一组新的时间序列数据。当需要查询的时候直接会返回已经计算好的结果,这样会比直接查询快,同时也减轻了PromQl的计算压力,同时对可视化查询的时候也很有用,可视化展示每次只需要刷新重复查询相同的表达式即可。
在配置的时候,除却 record: <string> 需要注意,其他的基本上是一样的,一个 groups 下可以包含多条规则 rules ,Recording 和 Rules 保存在 group 内,Group 中的规则以规则的配置时间间隔顺序运算,也就是全局中的 evaluation_interval 设置。
配置范例:
上面的规则其实就是根据 record 规则中的定义,Prometheus 会在后台完成 expr 中定义的 PromQL 表达式周期性运算,以 job 为维度使用 sum 聚合运算符 计算 函数rate 对http_requests_total 指标区间 10m 内的增长率,并且将计算结果保存到新的时间序列 job:http_requests_total:rate10m 中, 同时还可以通过 labels 为样本数据添加额外的自定义标签,但是要注意的是这个 lables 一定存在当前表达式 Metrics 中。
模板是在警报中使用时间序列标签和值展示的一种方法,可以用于警报规则中的注释(annotation)与标签(lable)。模板其实使用的go语言的标准模板语法,并公开一些包含时间序列标签和值的变量。这样查询的时候,更具有可读性,也可以执行其他PromQL查询 来向警报添加额外内容,ALertmanager Web UI中会根据标签值显示器警报信息。
{{ $lable.<lablename>}} 可以获取当前警报实例中的指定标签值
{{ $value }} 变量可以获取当前PromQL表达式的计算样本值。
调整好rules以后,我们可以使用 curl -XPOST 或者 对Prometheus服务重启,让警报规则生效。
这个时候,我们可以把阈值调整为 50 来进行故障模拟操作,这时在去访问UI的时候,当持续1分钟满足警报条件,实际警报状态已转换为 Firing,可以在 Annotations中看到模板信息 summary 与 description 已经成功显示。
规则检查
拉取数据配置,在配置字段内可以配置拉取数据的对象(Targets),job以及实例
定义job名称,是一个拉取单元。每个job_name都会自动引入默认配置如
这些也可以在单独的job中自定义
服务端拉取过来的数据也会存在标签,配置文件中也会有标签,这样就可能发生冲突。
true就是以抓取数据中的标签为准
false就会重新命名抓取数据中的标签为“exported”形式,然后添加配置文件中的标签
切换抓取数据所用的协议
定义可选的url参数
每次抓取数据请求的认证信息
password和password_file互斥只可以选择其一
bearer_token和bearer_token_file互斥只可以选择其一
抓取ssl请求时证书配置
通过代理去主去数据
Prometheus支持多种服务现工具,详细配置这里不再展开
更多参考官网: n/configuration/
服务发现来获取抓取目标为动态配置,这个配置项目为静态配置,静态配置为典型的targets配置,在改配置字段可以直接添加标签
采集器所采集的数据都会带有label,当使用服务发现时,比如consul所携带的label如下:
这些lable是数据筛选与聚合计算的基础。
抓取数据很繁杂,尤其是通过服务发现添加的target。所以过滤就显得尤为重要,我们知道抓取数据就是抓取target的一些列metrics,Prometheus过滤是通过对标签操作操现的,在字段relabel_configs和metric_relabel_configs里面配置,两者的配置都需要relabel_config字段。该字段需要配置项如下
target配置示例
target中metric示例
target中metric示例
使用示例
由以上可知当使用服务发现consul会带入标签__meta_consul_dc,现在为了表示方便需要将该标签变为dc
需要做如下配置,这里面action使用的replacement
过滤采集target
为了防止Prometheus服务过载,使用该字段限制经过relabel之后的数据采集数量,超过该数字拉取的数据就会被忽略
Prometheus可以进行远程读/写数据。字段remote_read和remote_write
(1)Prometheus 配置详解
(2)Prometheus配置文件prometheus.yml 四个模块详解
(3)官方文档说明
(4)Prometheus监控神器-Rules篇
(5)Prometheus监控神器-Alertmanager篇(1)
(6)Prometheus监控神器-Alertmanager篇(2)
关于phpconsul的介绍到此就结束了,不知道本篇文章是否对您有帮助呢?如果你还想了解更多此类信息,记得收藏关注本站,我们会不定期更新哦。