好得很程序员自学网
  • 首页
  • 后端语言
    • C#
    • PHP
    • Python
    • java
    • Golang
    • ASP.NET
  • 前端开发
    • Angular
    • react框架
    • LayUi开发
    • javascript
    • HTML与HTML5
    • CSS与CSS3
    • jQuery
    • Bootstrap
    • NodeJS
    • Vue与小程序技术
    • Photoshop
  • 数据库技术
    • MSSQL
    • MYSQL
    • Redis
    • MongoDB
    • Oracle
    • PostgreSQL
    • Sqlite
    • 数据库基础
    • 数据库排错
  • CMS系统
    • HDHCMS
    • WordPress
    • Dedecms
    • PhpCms
    • 帝国CMS
    • ThinkPHP
    • Discuz
    • ZBlog
    • ECSHOP
  • 高手进阶
    • Android技术
    • 正则表达式
    • 数据结构与算法
  • 系统运维
    • Windows
    • apache
    • 服务器排错
    • 网站安全
    • nginx
    • linux系统
    • MacOS
  • 学习教程
    • 前端脚本教程
    • HTML与CSS 教程
    • 脚本语言教程
    • 数据库教程
    • 应用系统教程
  • 新技术
  • 编程导航
    • 区块链
    • IT资讯
    • 设计灵感
    • 建站资源
    • 开发团队
    • 程序社区
    • 图标图库
    • 图形动效
    • IDE环境
    • 在线工具
    • 调试测试
    • Node开发
    • 游戏框架
    • CSS库
    • Jquery插件
    • Js插件
    • Web框架
    • 移动端框架
    • 模块管理
    • 开发社区
    • 在线课堂
    • 框架类库
    • 项目托管
    • 云服务

当前位置:首页>后端语言>PHP
<tfoot draggable='sEl'></tfoot>

php消费kafka php消费kafka阻塞

很多站长朋友们都不太清楚php消费kafka,今天小编就来给大家整理php消费kafka,希望对各位有所帮助,具体内容如下:

本文目录一览: 1、 Kafka数据消费 2、 消息中间件Kafka - PHP操作使用Kafka 3、 kafka——消费者原理解析 4、 大型的PHP应用,通常使用什么应用做消息队列? Kafka数据消费

消费者负责从订阅的主题上拉取消息,消费组是逻辑概念。一个消费者只属于一个消费组,一个消费组包一个或多个消费者。当消息发布到主题后,会被投递到每个消费组,但每个消费组中只有一个消费者能消费给消息。

消费者如何知道该消费哪个分区?当消费组内消费者个数发生变化时,分区分配是如何变化的呢?

按照消费者总数和分区总数进行整除运算来获得一个跨度,然后将分区按照跨度进行平均分配, 以保证分区尽可能均匀地分配给所有的消费者。对于 每一个主题 该策略会将消费组内所有的消费者按照名称的字典序排序然后为每个消费者划分固定的分区范围,如果不够平均分配,那么字典序靠前的消费者会被多分配一个分区。

假设n=分区数/消费者数量,m=分区数%消费者数量,那么前m个消费者每个分配n+1分区,后面的每个消费者分配n个分区。

如图所示主题中共有7个分区,此时消费组内只有一个消费者C0,C0订阅7个分区。

随着消费组内消费者不断加入,分区逐渐从C0分配到C1~C6,当最后一个消费者C7加入后,此时总共有8个消费者但是只有7个分区,因此C7由于分配不到分区而无法消费任何消息。

消费者并非越多越好,消费者数量应小于等于分区数量,否则会造成资源的浪费

缺点:

当一个消费组订阅两个分别包含四个分区的主题时,分区分配结果如下,比较均匀。

但当两个主题各有3个分区时,则会出现如下分区不均的问题。类似情况扩大的话,可能出现消费者过载问题。

将消费组内所有消费者及消费者订阅的所有主题的分区按照字典序排序,然后通过轮询方式将分区依次分配给每个消费者。如果消费组内消费者的订阅信息都是相同的,那么分区分配会比较均匀。如一个消费组两个消费者,分别订阅两个都有3的分区的主题,如图。

但是当消费组内消费者的订阅信息不同时,则会出现分配不均问题。如图,假设消费组内有三个消费者,主题1/2/3分别有1/2/3个分区,C0订阅主题1,C1订阅主题1和2,C2订阅主题1/2/3,分区结果将会如下图所示。

后来引入的策略,主要目的:

假设三个消费者,订阅了4个主题,每个主题有两个分区,那么初始分区分配结果如下:

乍一看,跟RoundRobin分配策略结果相同,但此时如果C1下线,那么消费组会执行再均衡操作,重新分配消息分区。如果是RoundRobin策略,分配结果如下:

而如果是Sticky分配策略,则结果如下:

StickyAssignor保留了上一次对C0和C2的分配结果,将C1的分区分配给C0和C2使其均衡。

如果发生分区重分配,那么对于同一个分区而 ,有可能之前的消费者和新指派的消费者不是同一个,之前消费者进行到一半的处理还要在新指派的消费者中再次复现一遍,造成重复消费。StickyAssignor分配策略如同其名称中的"sticky"一 样,让分配策略具备的“黏性”,尽可能地让前后两次分配相同,进而减少系统资源的损耗及其他异常情况的发生。

再来看下,消费者订阅信息不相同的情况,拿RoundRobinAssignor中的实例来说。

假设消费组内有三个消费者,主题1/2/3分别有1/2/3个分区,C0订阅主题1,C1订阅主题1和2,C2订阅主题1/2/3,RoundRobinAssignor分区结果将会如下图所示。

而采用StickyAssignor时,分区分配结果如下:

若此时C0下线,RoundRobinAssignor重分配的结果如下:

而StickyAssignor重分配结果如下:

综上:

StickyAssignor分配策略的优点就是可以使分区重分配具备 “黏性”,减少不必要的分区移动(一个分区剥离之前的消费者 ,转而分配给另一个新的消费者)。

Kafka中的消息消费是基于拉模式。

Kafka每次拉取一组消息,每条消息的格式如下:

在每次拉取方法时,它返回的是还没有被消费过的消息集。要实现这个功能,就需要知道上次消费时的消费位移,消费者在消费完消息后要进行消费位移提交动作,且消费位移要进行持久化,消费位移保存在__consumer_offsets主题中。

当前拉取消息的最大offset为x,消费者消费完成提交位移的是offset其实为x+1,表示下次拉取消息的起始位置。

自动提交

默认采用自动提交,默认每隔5s会将拉取到的每个分区的最大的消息位移进行提交。真正的提交动作是在拉取消息的逻辑完成,每次拉取消息前会判断是否可以进行位移提交,如果可以则提交上一次的位移。这里会有两个问题,如下图所示。

重复消费:当前拉取消息【x+2,x+7】,当前消费到X+5,在提交消费位移前,消费者宕机;新的消费者还是会从X+2开始拉取消息, 因此导致重复消费。

消息丢失:当前拉取消息【x+2,x+7】,当前消费X+5,到下次拉取的时候,消费位移已经提交为X+8,若此时消费者宕机,新的消费者会从X+8处开始消费,导致X+5 ~ X+7的消息没有被消费,导致消息的丢失。

手动提交

同步提交和异步提交。

同步提交默认提交本次拉取分区消息的最大偏移量,如本次拉取【X+2,X+7】的消息,同步提交默认提交X+8的位置;当时同步提交也可指定提交的偏移量,比如消费一条提交1次,因为提交本身为同步操作,所以会耗费一定的性能。

同步提交也会导致重复消费的问题,如消费完成后,提交前消费者宕机。

异步提交消费者线程不会被阻塞,使性能得到增强,但异步提交失败重试可能会导致提交位移被覆盖的问题,如本次异步提交offset=X失败,下次异步提交offset=X+y成功;此时前一次提交重试再次提交offset=x,如果业务上没有重试校验,会导致offset被覆盖,最终导致重复消费。

当新的消费组建立、消费者订阅新的主题或之前提交的位移信息因为过期被删除等,此时查不到纪录的消费位移。Kafka可配置从最新或从最早处开始消费。

Kafka还支持从特定位移处开始消费,可以实现回溯消费,Kafka内部提供了Seek()方法,来重置消费位移。

当需要回溯指定时间后的消息时,可先用offsetsForTimes方法查到指定时间后第一条消息的位移,然后再用seek重置位移。

分区的所属权从一个消费者转移到另一消费者的行为,它为消费组具备高可用性和伸缩性提供保障,使我们可以既方便又安全地删除或添加消费者。

Kfaka提供了组协调器(GroupCoordinator)和消费者协调器(ConsumerCoordinator),前者负责管理消费组,后者负责与前者交互,两者最重要的职责就是负责再均衡的操作。

举例说明,当消费者加入消费组时,消费者、消费组和组协调器之间一般会经历以下几个阶段。

第一阶段(FIND COORDINATOR)

消费者需要确定它所属的消费组对应的GroupCoordinator所在的broker并创建与该broker 相互通信的网络连接。

消费者会向集群中的某个节点发送FindCoordinatorRequest请求来查找对应的组协调器。

Kafka根据请求中的coordinator_key(也就是groupld )的哈希值计算__consumer_offsets中的分区编号,如下图所示。找到对应的分区之后,在寻找此分区leader副本所在的broker节点,该节点即为当前消费组所在的组协调器节点。

消费组最终的分区分配方案及组内消费者所提交的消费位移信息都会发送给该broker节点。该broker节点既扮演GroupCoordinato的角色又扮演保存分区分配方案和组内消费者位移的角色,这样可以省去很多不必要的中间轮转所带来的开销。

第二阶段(JOIN GROUP)

在成功找到消费组所对应的GroupCoordinator之后就进入加入消费组的阶段,在此阶段的 消费者会向GroupCoordinator发送JoinGroupRequest请求,并处理响应。

组协调器内部主要做了以下几件事:

选举消费组的****leader

如果当前组内没有leader,那么第一个加入消费组的则为leader。如果leader挂掉,组协调器会从内部维护的HashMap(消费者信息,key为member_id)中选择第一个key作为新的leader。

选举分区分配策略

前面说的每个消费者可能会上报多个分区分配策略,选举过程如下:

第三阶段(SYNC GROUP)

leader消费者根据在第二阶段中得到的分区分配策略来实施分区分配,然后将分配结果同步到组协调器。各个消费者会向组协调器发送SyncGroupRequest请求来同步分配方案。

请求结构如图,leader发送的请求才会有group_assignment。

其中包含了各个消费者对应的具体分配方案,member_id表示消费者的唯一标识,而 member_assignment是与消费者对应的分配方案,如图

消费者收到具体的分区分配方案后,会开启心跳任务,定期向组协调器发送心跳请求确定彼此在线。

第四阶段(HEARTBEAT)

在正式消费之前,消费者还需要确定拉取消息的起始位置。假设之前已经将最后的消费位移提交成功,那么消费者会请求获取上次提交的消费位移并从此处继续消费。

心跳线程是一个独立的线程,可以在轮询消息的空档发送。如果消费者停发送心跳的时间足够长,组协调器会认为这个消费者已经死亡,则触发一次再均衡行为。

消息中间件Kafka - PHP操作使用Kafka

cd librdkafka/

./configure make make install

安装成功界面 没有报错就是安装成功

kafka——消费者原理解析

kafka采用发布订阅模式:一对多。发布订阅模式又分两种:

Kafka为这两种模型提供了单一的消费者抽象模型: 消费者组 (consumer group)。 消费者用一个消费者组名标记自己。 一个发布在Topic上消息被分发给此消费者组中的一个消费者。 假如所有的消费者都在一个组中,那么这就变成了队列模型。 假如所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型。 一个消费者组中消费者订阅同一个Topic,每个消费者接受Topic的一部分分区的消息,从而实现对消费者的横向扩展,对消息进行分流。

注意:当单个消费者无法跟上数据生成的速度,就可以增加更多的消费者分担负载,每个消费者只处理部分partition的消息,从而实现单个应用程序的横向伸缩。但是不要让消费者的数量多于partition的数量,此时多余的消费者会空闲。此外,Kafka还允许多个应用程序从同一个Topic读取所有的消息,此时只要保证每个应用程序有自己的消费者组即可。

消费者组的概念就是:当有多个应用程序都需要从Kafka获取消息时,让每个app对应一个消费者组,从而使每个应用程序都能获取一个或多个Topic的全部消息;在每个消费者组中,往消费者组中添加消费者来伸缩读取能力和处理能力,消费者组中的每个消费者只处理每个Topic的一部分的消息,每个消费者对应一个线程。

在同一个群组中,无法让一个线程运行多个消费者,也无法让多线线程安全地共享一个消费者。按照规则,一个消费者使用一个线程,如果要在同一个消费者组中运行多个消费者,需要让每个消费者运行在自己的线程中。最好把消费者的逻辑封装在自己的对象中,然后使用java的ExecutorService启动多个线程,使每个消费者运行在自己的线程上,可参考

一个 consumer group 中有多个 consumer,一个 topic 有多个 partition,所以必然会涉及到 partition 的分配问题,即确定哪个 partition 由哪个 consumer 来消费。

关于如何设置partition值需要考虑的因素

Kafka 有两种分配策略,一个是 RoundRobin,一个是 Range,默认为Range,当消费者组内消费者发生变化时,会触发分区分配策略(方法重新分配)。

以上三种现象会使partition的所有权在消费者之间转移,这样的行为叫作再均衡。

再均衡的优点 :

再均衡的缺点 :

RoundRobin 轮询方式将分区所有作为一个整体进行 Hash 排序,消费者组内分配分区个数最大差别为 1,是按照组来分的,可以解决多个消费者消费数据不均衡的问题。

但是,当消费者组内订阅不同主题时,可能造成消费混乱,如下图所示,Consumer0 订阅主题 A,Consumer1 订阅主题 B。

将 A、B 主题的分区排序后分配给消费者组,TopicB 分区中的数据可能 分配到 Consumer0 中。

Range 方式是按照主题来分的,不会产生轮询方式的消费混乱问题。

但是,如下图所示,Consumer0、Consumer1 同时订阅了主题 A 和 B,可能造成消息分配不对等问题,当消费者组内订阅的主题越多,分区分配可能越不均衡。

由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。

consumer group +topic + partition 唯一确定一个offest

Kafka 0.9 版本之前,consumer 默认将 offset 保存在 Zookeeper 中,从 0.9 版本开始,

consumer 默认将 offset 保存在 Kafka 一个内置的 topic 中,该 topic 为__consumer_offsets。

你如果特别好奇,实在想看看offset什么的,也可以执行下面操作:

修改配置文件 consumer.properties

再启动一个消费者

当消费者崩溃或者有新的消费者加入,那么就会触发再均衡(rebalance),完成再均衡后,每个消费者可能会分配到新的分区,而不是之前处理那个,为了能够继续之前的工作,消费者需要读取每个partition最后一次提交的偏移量,然后从偏移量指定的地方继续处理。

case1:如果提交的偏移量小于客户端处理的最后一个消息的偏移量,那么处于两个偏移量之间的消息就会被重复处理。

case2:如果提交的偏移量大于客户端处理的最后一个消息的偏移量,那么处于两个偏移量之间的消息将会丢失。

自动提交的优点是方便,但是可能会重复处理消息

不足:broker在对提交请求作出回应之前,应用程序会一直阻塞,会限制应用程序的吞吐量。

因此,在消费者关闭之前一般会组合使用commitAsync和commitSync提交偏移量。

ConsumerRebalanceListener需要实现的两个方法

下面的例子演示如何在失去partition的所有权之前通过onPartitionRevoked()方法来提交偏移量。

Consumer有个Rebalance的特性,即重新负载均衡,该特性依赖于一个协调器来实现。每当Consumer Group中有Consumer退出或有新的Consumer加入都会触发Rebalance。

之所以要重新负载均衡,是为了将退出的Consumer所负责处理的数据再重新分配到组内的其他Consumer上进行处理。或当有新加入的Consumer时,将组内其他Consumer的负载压力,重新进均匀分配,而不会说新加入一个Consumer就闲在那。

下面就用几张图简单描述一下,各种情况触发Rebalance时,组内成员是如何与协调器进行交互的。

Tips :图中的Coordinator是协调器,而generation则类似于乐观锁中的版本号,每当成员入组成功就会更新,也是起到一个并发控制的作用。

参考:

大型的PHP应用,通常使用什么应用做消息队列?

一、消息队列概述

消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题。实现高性能,高可用,可伸缩和最终一致性架构。是大型分布式系统不可缺少的中间件。

目前在生产环境,使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ等。

二、消息队列应用场景

以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景。

2.1异步处理

场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种1.串行的方式;2.并行方式。

(1)串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端。(架构KKQ:466097527,欢迎加入)

(2)并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间。

假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。

因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)。

小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?

引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:

按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍。

2.2应用解耦

场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图:

传统模式的缺点:

1) 假如库存系统无法访问,则订单减库存将失败,从而导致订单失败;

2) 订单系统与库存系统耦合;

如何解决以上问题呢?引入应用消息队列后的方案,如下图:

订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功。

库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作。

假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦。

2.3流量削锋

流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛。

应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。

可以控制活动的人数;

可以缓解短时间内高流量压垮应用;

用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面;

秒杀业务根据消息队列中的请求信息,再做后续处理。

2.4日志处理

日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下:

日志采集客户端,负责日志数据采集,定时写受写入Kafka队列;

Kafka消息队列,负责日志数据的接收,存储和转发;

日志处理应用:订阅并消费kafka队列中的日志数据;

以下是新浪kafka日志处理应用案例:

(1)Kafka:接收用户日志的消息队列。

(2)Logstash:做日志解析,统一成JSON输出给Elasticsearch。

(3)Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能。

(4)Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因。

2.5消息通讯

消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。

点对点通讯:

客户端A和客户端B使用同一队列,进行消息通讯。

聊天室通讯:

客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。

以上实际是消息队列的两种消息模式,点对点或发布订阅模式。模型为示意图,供参考。

三、消息中间件示例

3.1电商系统

消息队列采用高可用,可持久化的消息中间件。比如Active MQ,Rabbit MQ,Rocket Mq。(1)应用将主干逻辑处理完成后,写入消息队列。消息发送是否成功可以开启消息的确认模式。(消息队列返回消息接收成功状态后,应用再返回,这样保障消息的完整性)

(2)扩展流程(发短信,配送处理)订阅队列消息。采用推或拉的方式获取消息并处理。

(3)消息将应用解耦的同时,带来了数据一致性问题,可以采用最终一致性方式解决。比如主数据写入数据库,扩展应用根据消息队列,并结合数据库方式实现基于消息队列的后续处理。

3.2日志收集系统

分为Zookeeper注册中心,日志收集客户端,Kafka集群和Storm集群(OtherApp)四部分组成。

Zookeeper注册中心,提出负载均衡和地址查找服务;

日志收集客户端,用于采集应用系统的日志,并将数据推送到kafka队列;

四、JMS消息服务

讲消息队列就不得不提JMS 。JMS(Java Message Service,Java消息服务)API是一个消息服务的标准/规范,允许应用程序组件基于JavaEE平台创建、发送、接收和读取消息。它使分布式通信耦合度更低,消息服务更加可靠以及异步性。

在EJB架构中,有消息bean可以无缝的与JM消息服务集成。在J2EE架构模式中,有消息服务者模式,用于实现消息与应用直接的解耦。

4.1消息模型

在JMS标准中,有两种消息模型P2P(Point to Point),Publish/Subscribe(Pub/Sub)。

4.1.1 P2P模式

P2P模式包含三个角色:消息队列(Queue),发送者(Sender),接收者(Receiver)。每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,直到他们被消费或超时。

P2P的特点

每个消息只有一个消费者(Consumer)(即一旦被消费,消息就不再在消息队列中)

发送者和接收者之间在时间上没有依赖性,也就是说当发送者发送了消息之后,不管接收者有没有正在运行,它不会影响到消息被发送到队列

接收者在成功接收消息之后需向队列应答成功

如果希望发送的每个消息都会被成功处理的话,那么需要P2P模式。(架构KKQ:466097527,欢迎加入)

4.1.2 Pub/sub模式

包含三个角色主题(Topic),发布者(Publisher),订阅者(Subscriber) 。多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。

Pub/Sub的特点

每个消息可以有多个消费者

发布者和订阅者之间有时间上的依赖性。针对某个主题(Topic)的订阅者,它必须创建一个订阅者之后,才能消费发布者的消息。

为了消费消息,订阅者必须保持运行的状态。

为了缓和这样严格的时间相关性,JMS允许订阅者创建一个可持久化的订阅。这样,即使订阅者没有被激活(运行),它也能接收到发布者的消息。

如果希望发送的消息可以不被做任何处理、或者只被一个消息者处理、或者可以被多个消费者处理的话,那么可以采用Pub/Sub模型。

4.2消息消费

在JMS中,消息的产生和消费都是异步的。对于消费来说,JMS的消息者可以通过两种方式来消费消息。

(1)同步

订阅者或接收者通过receive方法来接收消息,receive方法在接收到消息之前(或超时之前)将一直阻塞;

(2)异步

订阅者或接收者可以注册为一个消息监听器。当消息到达之后,系统自动调用监听器的onMessage方法。

JNDI:Java命名和目录接口,是一种标准的Java命名系统接口。可以在网络上查找和访问服务。通过指定一个资源名称,该名称对应于数据库或命名服务中的一个记录,同时返回资源连接建立所必须的信息。

JNDI在JMS中起到查找和访问发送目标或消息来源的作用。(架构KKQ:466097527,欢迎加入)

4.3JMS编程模型

(1) ConnectionFactory

创建Connection对象的工厂,针对两种不同的jms消息模型,分别有QueueConnectionFactory和TopicConnectionFactory两种。可以通过JNDI来查找ConnectionFactory对象。

(2) Destination

Destination的意思是消息生产者的消息发送目标或者说消息消费者的消息来源。对于消息生产者来说,它的Destination是某个队列(Queue)或某个主题(Topic);对于消息消费者来说,它的Destination也是某个队列或主题(即消息来源)。

所以,Destination实际上就是两种类型的对象:Queue、Topic可以通过JNDI来查找Destination。

(3) Connection

Connection表示在客户端和JMS系统之间建立的链接(对TCP/IP socket的包装)。Connection可以产生一个或多个Session。跟ConnectionFactory一样,Connection也有两种类型:QueueConnection和TopicConnection。

(4) Session

Session是操作消息的接口。可以通过session创建生产者、消费者、消息等。Session提供了事务的功能。当需要使用session发送/接收多个消息时,可以将这些发送/接收动作放到一个事务中。同样,也分QueueSession和TopicSession。

(5) 消息的生产者

消息生产者由Session创建,并用于将消息发送到Destination。同样,消息生产者分两种类型:QueueSender和TopicPublisher。可以调用消息生产者的方法(send或publish方法)发送消息。

(6) 消息消费者

消息消费者由Session创建,用于接收被发送到Destination的消息。两种类型:QueueReceiver和TopicSubscriber。可分别通过session的createReceiver(Queue)或createSubscriber(Topic)来创建。当然,也可以session的creatDurableSubscriber方法来创建持久化的订阅者。

(7) MessageListener

消息监听器。如果注册了消息监听器,一旦消息到达,将自动调用监听器的onMessage方法。EJB中的MDB(Message-Driven Bean)就是一种MessageListener。

深入学习JMS对掌握JAVA架构,EJB架构有很好的帮助,消息中间件也是大型分布式系统必须的组件。本次分享主要做全局性介绍,具体的深入需要大家学习,实践,总结,领会。

五、常用消息队列

一般商用的容器,比如WebLogic,JBoss,都支持JMS标准,开发上很方便。但免费的比如Tomcat,Jetty等则需要使用第三方的消息中间件。本部分内容介绍常用的消息中间件(Active MQ,Rabbit MQ,Zero MQ,Kafka)以及他们的特点。

5.1 ActiveMQ

ActiveMQ 是Apache出品,最流行的,能力强劲的开源消息总线。ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,尽管JMS规范出台已经是很久的事情了,但是JMS在当今的J2EE应用中间仍然扮演着特殊的地位。

ActiveMQ特性如下:

⒈ 多种语言和协议编写客户端。语言: Java,C,C++,C#,Ruby,Perl,Python,PHP。应用协议: OpenWire,Stomp REST,WS Notification,XMPP,AMQP

⒉ 完全支持JMS1.1和J2EE 1.4规范 (持久化,XA消息,事务)

⒊ 对spring的支持,ActiveMQ可以很容易内嵌到使用Spring的系统里面去,而且也支持Spring2.0的特性

⒋ 通过了常见J2EE服务器(如 Geronimo,JBoss 4,GlassFish,WebLogic)的测试,其中通过JCA 1.5 resource adaptors的配置,可以让ActiveMQ可以自动的部署到任何兼容J2EE 1.4 商业服务器上

⒌ 支持多种传送协议:in-VM,TCP,SSL,NIO,UDP,JGroups,JXTA

⒍ 支持通过JDBC和journal提供高速的消息持久化

⒎ 从设计上保证了高性能的集群,客户端-服务器,点对点

⒏ 支持Ajax

⒐ 支持与Axis的整合

⒑ 可以很容易得调用内嵌JMS provider,进行测试

5.2 RabbitMQ

RabbitMQ是流行的开源消息队列系统,用erlang语言开发。RabbitMQ是AMQP(高级消息队列协议)的标准实现。支持多种客户端,如:Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP等,支持AJAX,持久化。用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。

几个重要概念:

Broker:简单来说就是消息队列服务器实体。

Exchange:消息交换机,它指定消息按什么规则,路由到哪个队列。

Queue:消息队列载体,每个消息都会被投入到一个或多个队列。

Binding:绑定,它的作用就是把exchange和queue按照路由规则绑定起来。

Routing Key:路由关键字,exchange根据这个关键字进行消息投递。

vhost:虚拟主机,一个broker里可以开设多个vhost,用作不同用户的权限分离。

producer:消息生产者,就是投递消息的程序。

consumer:消息消费者,就是接受消息的程序。

channel:消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务。

消息队列的使用过程,如下:

(1)客户端连接到消息队列服务器,打开一个channel。

(2)客户端声明一个exchange,并设置相关属性。

(3)客户端声明一个queue,并设置相关属性。

(4)客户端使用routing key,在exchange和queue之间建立好绑定关系。

(5)客户端投递消息到exchange。

exchange接收到消息后,就根据消息的key和已经设置的binding,进行消息路由,将消息投递到一个或多个队列里。

5.3 ZeroMQ

号称史上最快的消息队列,它实际类似于Socket的一系列接口,他跟Socket的区别是:普通的socket是端到端的(1:1的关系),而ZMQ却是可以N:M 的关系,人们对BSD套接字的了解较多的是点对点的连接,点对点连接需要显式地建立连接、销毁连接、选择协议(TCP/UDP)和处理错误等,而ZMQ屏蔽了这些细节,让你的网络编程更为简单。ZMQ用于node与node间的通信,node可以是主机或者是进程。

引用官方的说法: “ZMQ(以下ZeroMQ简称ZMQ)是一个简单好用的传输层,像框架一样的一个socket library,他使得Socket编程更加简单、简洁和性能更高。是一个消息处理队列库,可在多个线程、内核和主机盒之间弹性伸缩。ZMQ的明确目标是“成为标准网络协议栈的一部分,之后进入Linux内核”。现在还未看到它们的成功。但是,它无疑是极具前景的、并且是人们更加需要的“传统”BSD套接字之上的一 层封装。ZMQ让编写高性能网络应用程序极为简单和有趣。”

特点是:

高性能,非持久化;

跨平台:支持Linux、Windows、OS X等。

多语言支持; C、C++、Java、.NET、Python等30多种开发语言。

可单独部署或集成到应用中使用;

可作为Socket通信库使用。

与RabbitMQ相比,ZMQ并不像是一个传统意义上的消息队列服务器,事实上,它也根本不是一个服务器,更像一个底层的网络通讯库,在Socket API之上做了一层封装,将网络通讯、进程通讯和线程通讯抽象为统一的API接口。支持“Request-Reply “,”Publisher-Subscriber“,”Parallel Pipeline”三种基本模型和扩展模型。

ZeroMQ高性能设计要点:

1、无锁的队列模型

对于跨线程间的交互(用户端和session)之间的数据交换通道pipe,采用无锁的队列算法CAS;在pipe两端注册有异步事件,在读或者写消息到pipe的时,会自动触发读写事件。

2、批量处理的算法

对于传统的消息处理,每个消息在发送和接收的时候,都需要系统的调用,这样对于大量的消息,系统的开销比较大,zeroMQ对于批量的消息,进行了适应性的优化,可以批量的接收和发送消息。

3、多核下的线程绑定,无须CPU切换

区别于传统的多线程并发模式,信号量或者临界区, zeroMQ充分利用多核的优势,每个核绑定运行一个工作者线程,避免多线程之间的CPU切换开销。

5.4 Kafka

Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群机来提供实时的消费。

Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:

通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。(文件追加的方式写入数据,过期的数据定期删除)

高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。

支持通过Kafka服务器和消费机集群来分区消息。

支持Hadoop并行数据加载。

Kafka相关概念

Broker

Kafka集群包含一个或多个服务器,这种服务器被称为broker[5]

Topic

每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)

Partition

Parition是物理上的概念,每个Topic包含一个或多个Partition.

Producer

负责发布消息到Kafka broker

Consumer

消息消费者,向Kafka broker读取消息的客户端。

Consumer Group

每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。

一般应用在大数据日志处理或对实时性(少量延迟),可靠性(少量丢数据)要求稍低的场景使用。

关于php消费kafka的介绍到此就结束了,不知道本篇文章是否对您有帮助呢?如果你还想了解更多此类信息,记得收藏关注本站,我们会不定期更新哦。

查看更多关于php消费kafka php消费kafka阻塞的详细内容...

声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://haodehen.cn/did197731
更新时间:2023-04-26   阅读:38次

上一篇: php静态缓存代码 php静态缓存代码是什么

下一篇:php获取主机目录 php获取主机目录的命令

最新资料更新

  • 1.php数据分数排序 php实现积分排行榜
  • 2.phpsql添加记录 php数据表里怎么添加数据
  • 3.phpwhere循环 php中的循环
  • 4.php资源扫描教程 php识别二维码内容源码
  • 5.jq读取php变量 php读取html内容
  • 6.php下载文件完整官方版 php在哪下载
  • 7.字符串对齐方法php php字符串赋值
  • 8.php求100的质数 php求出1100的素数
  • 9.基于php在线聊天 php 在线聊天
  • 10.php包含eaplay吗 php是否包含
  • 11.php数据库名字大小写 php函数名称区分大小写吗
  • 12.php字体和颜色 php字体样式代码
  • 13.mk_dirphp mkdirphp
  • 14.如何阅读php源码 php在线源码获取
  • 15.php时间戳转换字符串 php 时间戳转日期
  • 16.学校php培训机构 php培训学校是什么意思
  • 17.图片二进制php 图片二进制转换器
  • 18.php网页滚动代码 php 如何做滑动加载
  • 19.长沙php就业怎样 2021年php就业班
  • 20.php函数rand PHP函数的参数传递包括

CopyRight:2016-2025好得很程序员自学网 备案ICP:湘ICP备09009000号-16 http://haodehen.cn
本站资讯不构成任何建议,仅限于个人分享,参考须谨慎!
本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。

网站内容来源于网络分享,如有侵权发邮箱到:kenbest@126.com,收到邮件我们会即时下线处理。
网站框架支持:HDHCMS   51LA统计 百度统计
Copyright © 2018-2025 「好得很程序员自学网」
[ SiteMap ]