好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

Canvas 文本填充线性渐变的使用详解

前言

在 Canvas 中对文本填充水平或垂直的线性渐变可以轻易实现,而带角度的渐变就复杂很多;就好像下面这样,假设文本矩形 宽 为 W , 高为 H , 左上角坐标为 X, Y 。

猜想与答案

给出两个答案:

正确答案是图二,因为这样得出来的坐标生成的渐变最紧接文本矩形边界,它的运动轨迹如下动图:

(图来 源 :Do you really know CSS linear-gra die nts)

渐变起点与终点坐标的计算

所以,渐变的起点与终点坐标该怎么计算呢?答:

先求得起点与终点的长度( 距离 )。 根据长度与文本矩形的中心点坐标分别计算出起点与终点坐标。

线性渐变长度的计算 W3C 给出了一个公式(A 表示角度):

gradientLineLength = abs(W * sin(A)) + abs(H * cos(A))

不过 ,该公式主要应用于 CSS 的线性渐变设置,即以 12 点钟 方向 为 0& deg ;,顺时针旋转。

而我们需要的是以 3 点钟方向为 0°,逆时针旋转,即公式为:

gradientLineLength = abs(W * cos(A)) + abs(H * sin(A))

//  半 长:
halfGradientLineLength = (abs(W * cos(A)) + abs(H * sin(A))) / 2

那么这个公式是怎么来的呢?以下是笔者的求解:

由图可得以下方程组:

因此可推导出:

化简后为:

所以 c1 + c2 为:

由三角函数 平方 公式知: cos(A) * cos(A) = 1 - sin(A) * sin(A) , 代入 c1 + c2 :

第一步化简后:

最后的结果就是:

因为 sin, cos 在函数周期内存在负值(见下面角度对应的三角函数周期图),所以线性渐变的长度需要取 绝对值 。

至此,我们 知道 了线性渐变长度,文本矩形的中心点坐标很好算,即:

 center X = X + W / 2
centerY = Y + H / 2

所以,起点与终点的坐标分别为:

startX = centerX - cos(A) * halfGradientLineLength
startY = centerY + sin(A) * halfGradientLineLength

endX = centerX + cos(A) * halfGradientLineLength
endY = centerY - sin(A) * halfGradientLineLength

看看最终效果

经验注释

进行三角函数计算时,应尽量避免先用 tan , 因为 tan 在其周期内存在无穷值,需要做特定的条件判断,而 sin, cos 没有此类问题,代码书写更为简洁清晰并且不会因疏忽产生错误,见下面三角函数与角度的对应关系周期图。

参阅

Do you really know CSS linear-gradients?

MDN linear-gradient

W3C - CSS Images Module Level 3 # linear-gradients

到此这篇关于Canvas 文本填充线性渐变的使用详解的 文章 就介绍到这了,更多相关Canvas文本填充线性渐变内容请搜索以前的文章或继续浏览下面的相关文章,希望大家以后多多支持!

总结

以上是 为你收集整理的 Canvas 文本填充线性渐变的使用详解 全部内容,希望文章能够帮你解决 Canvas 文本填充线性渐变的使用详解 所遇到的问题。

如果觉得 网站内容还不错, 推荐好友。

查看更多关于Canvas 文本填充线性渐变的使用详解的详细内容...

  阅读:12次