webrtc QOS笔记一 Neteq直方图算法浅读
目录
webrtc QOS笔记一 Neteq直方图算法浅读 Histogram Algorithm 获取目标延迟 遗忘因子曲线想起博客园帐号了,回来填点webrtc qos的坑, 本文分析个很好用的直方图算法,不仅可以在音频里面计算抖动延迟,我发现用来统计丢包率也很好用.
Histogram Algorithm
DelayManager::Update()->Histogram::Add() 会根据计算的iat_packet(inter arrival times, =实际包间间隔 / 打包时长),将该iat_packet插入IATVector直方图对应数组下标内。并更新该直方图的数据下标下概率参数。[M88 SRC]
一共有四步操作:
1、用遗忘因子,对历史数据的出现概率进行遗忘, 并统计概率合
2、增大本次计算到的IAT的概率值。
例:
假如历史bucket 数据为: buckets_ = {0,0,1,0} 遗忘因子为 0.9: forget_factor = 0.9 新来的抖动延迟数据为66ms, 桶间为20ms一个单位, 那插入位置为 66 / 20 = 3,则更新后 buckets = {0,0,0.9,0.1} 假若使用%95分位的值作为目标延迟, 则更新后的目标延迟为 60ms.
3、调整本次计算到的IAT的概率,使整个IAT的概率分布之和近似为1。调整方式为假设当前概率分布之和为tempSum,则:
4、更新forget_factor_, 使遗忘因子forget_factor_逼近base_forget_factor_
a.使用start_forget_weight_更新(默认初始值start_forget_weight_ = 2,base_forget_factor_=0.9993)
获取目标延迟
依据probability获取此百分位的值作为目标延迟(初始值0.97)
int Histogram::Quantile(int probability) { // Find the bucket for which the probability of observing an // inter-arrival time larger than or equal to |index| is larger than or // equal to |probability|. The sought probability is estimated using // the histogram as the reverse cumulant PDF, i.e., the sum of elements from // the end up until |index|. Now, since the sum of all elements is 1 // (in Q30) by definition, and since the solution is often a low value for // |iat_index|, it is more efficient to start with |sum| = 1 and subtract // elements from the start of the histogram. int inverse_probability = (1 << 30) - probability; size_t index = 0; // Start from the beginning of |buckets_|. int sum = 1 << 30; // Assign to 1 in Q30. sum -= buckets_[index]; while ((sum > inverse_probability) && (index < buckets_.size() - 1)) { // Subtract the probabilities one by one until the sum is no longer greater // than |inverse_probability|. ++index; sum -= buckets_[index]; } return static_cast<int>(index); }
遗忘因子曲线
测试曲线,调整遗忘因子提高抖动估计灵敏度:
#include <iostream> #include <cstdint> #include <vector> uint32_t packet_loss_rate_ = 0; int main() { std::vector<int> input; std::vector<float> buckets; float forget_factor = 0.9993; float val = 0; for (size_t k = 0; k < 1000; k ++) { val = val * forget_factor + (1-forget_factor); buckets.push_back(val); } for (int i = 0; i < 1000; ++i) { std::cout << buckets[i]<< " "; } return 0; }
查看更多关于webrtc QOS笔记一 Neteq直方图算法浅读的详细内容...