好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

Android源码学习之接着浅析SystemServer

Android源码学习之接着浅析SystemServer

    通过 Android源码学习之浅析SystemServer脉络 知道了SystemServer是怎么通过利用JNI,但相继的问题出现了:SystemServer是干嘛用的?本人从《深入理解Android 卷2》截取摘录这一问题的回答:

     SystemServer是什么?它是Android Java的两大支柱之一。另外一个支柱是专门负责孵化Java进程的Zygote。这两大支柱倒了一个,都会导致Android Java的崩溃(所有由Zygote孵化的Java进程都会被销毁,而SystemServer就是由Zygote孵化而来)。若Android Java真的崩溃了,则Linux系统中的进程init会重新启动“两大支柱”以重建Android Java。

    SystemServer和系统服务有着重要关系。Android系统中几乎所有的核心服务都在这个进程中,如ActivityManagerService、PowerManagerService和WindowManagerService等。那么,作为这些服务的大本营,SystemServer会是什么样的呢?

    其中“SystemServer会是什么样的呢?“知道了一些,但不知道SystemServer怎么就是服务的大本营了?在回去看看SystemServer.java。打开Source Insight项目,发现代码如下:

     public   static   final   void   init2() {
        Slog.i(TAG,  "Entered the Android system server!" );
        Thread thr  =  new   ServerThread();
        thr.setName( "android.server.ServerThread" );
        thr.start();
    } 

又看见ini2函数了,这个函数主要的功能是创建新的线程ServerThread,所以当它执行start时,我们应该找到这个类的override的run()函数,在同样的SystemServer.java中找到了ServerThread类的run函数,这个函数长的有点令人发指,但再仔细看发现其中有很多”重复的相似的代码“,各种***Service、null、ServiceManager.addService("***",new ***)和try{}catch(){}、以及Slog.i()等等,不愧是大本营,几乎所有的服务都在这里汇集ServiceManager.addService("***",new ***),有人这些服务进行归类,一共六大类。我自己从这长长的run函数中截取皮毛代码,如下所示:

 LightsService lights =  null  ;
        PowerManagerService power  =  null  ;
        BatteryService battery  =  null  ;
        AlarmManagerService alarm  =  null  ;
        NetworkManagementService networkManagement  =  null  ;
        NetworkStatsService networkStats  =  null  ;
        NetworkPolicyManagerService networkPolicy  =  null  ;
        ConnectivityService connectivity  =  null  ;
        WifiP2pService wifiP2p  =  null  ;
        WifiService wifi  =  null  ;
        IPackageManager pm  =  null  ;
        Context context  =  null  ;
        WindowManagerService wm  =  null  ;
        BluetoothService bluetooth  =  null  ;
        BluetoothA2dpService bluetoothA2dp  =  null  ;
        DockObserver dock  =  null  ;
        UsbService usb  =  null  ;
        UiModeManagerService uiMode  =  null  ;
        RecognitionManagerService recognition  =  null  ;
        ThrottleService throttle  =  null  ;
        NetworkTimeUpdateService networkTimeUpdater  =  null  ;

          //   Critical services... 
         try   {
            Slog.i(TAG,  "Entropy Service" );
            ServiceManager.addService( "entropy",  new   EntropyService());

            Slog.i(TAG,  "Power Manager" );
            power  =  new   PowerManagerService();
            ServiceManager.addService(Context.POWER_SERVICE, power);

            Slog.i(TAG,  "Activity Manager" );
            context  =  ActivityManagerService.main(factoryTest);

            Slog.i(TAG,  "Telephony Registry" );
            ServiceManager.addService( "telephony.registry",  new   TelephonyRegistry(context));

            AttributeCache.init(context);

            Slog.i(TAG,  "Package Manager" );
              //   Only run "core" apps if we're encrypting the device. 
            String cryptState = SystemProperties.get("vold.decrypt" );
              boolean  onlyCore =  false  ;
              if   (ENCRYPTING_STATE.equals(cryptState)) {
                Slog.w(TAG,  "Detected encryption in progress - only parsing core apps" );
                onlyCore  =  true  ;
            }   else   if   (ENCRYPTED_STATE.equals(cryptState)) {
                Slog.w(TAG,  "Device encrypted - only parsing core apps");

所以这里的最重要的一行代码就是ServiceManager.addService("***",new ***),但自己初次分析源代码,还不知道这函数具体是怎么将各种服务添加到系统中的,所以这个ServiceManager类的分析,待到自己有能力了在做总结。高深的自己不懂,只能拿软柿子来捏一捏了,这么多**service,我选择了最简单的一个EntropyService分析(要是你读过了《深入理解Android》别拍砖啊,但求指导~~~)。
    找到该文件的137(貌似)代码---->ServiceManager.addService("entropy",  new  EntropyService());
    所以接着找到这个类EntropyService,类代码如下:

 public   EntropyService() {
          this (getSystemDir() + "/entropy.dat", "/dev/urandom" );
    }

      /**   Test only interface, not for public use   */ 
     public   EntropyService(String entropyFile, String randomDevice) {
          if  (randomDevice ==  null ) {  throw   new  NullPointerException("randomDevice" ); }
          if  (entropyFile ==  null ) {  throw   new  NullPointerException("entropyFile" ); }

          this .randomDevice =  randomDevice;
          this .entropyFile =  entropyFile;
        loadInitialEntropy();
        addDeviceSpecificEntropy();
        writeEntropy();
        scheduleEntropyWriter();
    } 

     首先是调用自己的函数getSystemDir(),创建文件夹,然后返回路径名称,接着就是想在创建entropy.dat文件保存信息,最后调用另一个带两个参数的构造函数(有点废话),紧接着保存两个string参数、调用四个函数。字面的意思是初始化、添加、写入、按时间写。看第一个函数:

     private   void   loadInitialEntropy() {
          try   {
            RandomBlock.fromFile(entropyFile).toFile(randomDevice,   false  );
        }   catch   (IOException e) {
            Slog.w(TAG,  "unable to load initial entropy (first boot?)" , e);
        }
    } 

看似简单,它是调用了RandomBlock类的静态函数fromFile,然后再写入,意思就是从"entropy.dat"写入"/dev/urandom"中,具体是什么现在也不懂,看看RandomBlock类。

 class   RandomBlock {

      private   static   final  String TAG = "RandomBlock" ;
      private   static   final   boolean  DEBUG =  false  ;
      private   static   final   int  BLOCK_SIZE = 4096 ;
      private   byte [] block =  new   byte  [BLOCK_SIZE];

      private   RandomBlock() { }

      static  RandomBlock fromFile(String filename)  throws   IOException {
          if  (DEBUG) Slog.v(TAG, "reading from file " +  filename);
        InputStream stream  =  null  ;
          try   {
            stream  =  new   FileInputStream(filename);
              return   fromStream(stream);
        }   finally   {
            close(stream);
        }
    }

      private   static  RandomBlock fromStream(InputStream in)  throws   IOException {
        RandomBlock retval  =  new   RandomBlock();
          int  total = 0 ;
          while (total <  BLOCK_SIZE) {
              int  result = in.read(retval.block, total, BLOCK_SIZE -  total);
              if  (result == -1 ) {
                  throw   new   EOFException();
            }
            total  +=  result;
        }
          return   retval;
    }

      void  toFile(String filename,  boolean  sync)  throws   IOException {
          if  (DEBUG) Slog.v(TAG, "writing to file " +  filename);
        RandomAccessFile out  =  null  ;
          try   {
            out  =  new  RandomAccessFile(filename, sync ? "rws" : "rw" );
            toDataOut(out);
            truncateIfPossible(out);
        }   finally   {
            close(out);
        }
    }

      private   static   void   truncateIfPossible(RandomAccessFile f) {
          try   {
            f.setLength(BLOCK_SIZE);
        }   catch   (IOException e) {
              //   ignore this exception.  Sometimes, the file we're trying to
              //   write is a character device, such as /dev/urandom, and
              //   these character devices do not support setting the length. 
         }
    }

      private   void  toDataOut(DataOutput out)  throws   IOException {
        out.write(block);
    }

      private   static   void   close(Closeable c) {
          try   {
              if  (c ==  null  ) {
                  return  ;
            }
            c.close();
        }   catch   (IOException e) {
            Slog.w(TAG,  "IOException thrown while closing Closeable" , e);
        }
    }
} 

这类够绝的,不是static就是private,连构造函数都private了,明白了,先是从文件entropy.dat读出数据流,保存到block字符数组中,然后写入到urandom中,这里有两个文件操作的类FileInputStream和RandomAccessFile,让我想到了《Head First Design Pattern》中有个(装饰模式?)介绍过怎么解读Java的文件操作类之间的关系,回头好好复习一下。
     第一关键函数读完了,接着第二个addDeviceSpecificEntropy函数,看代码:

  /**  
     * Add additional information to the kernel entropy pool.  The
     * information isn't necessarily "random", but that's ok.  Even
     * sending non-random information to {  @code   /dev/urandom} is useful
     * because, while it doesn't increase the "quality" of the entropy pool,
     * it mixes more bits into the pool, which gives us a higher degree
     * of uncertainty in the generated randomness.  Like nature, writes to
     * the random device can only cause the quality of the entropy in the
     * kernel to stay the same or increase.
     *
     * <p>For maximum effect, we try to target information which varies
     * on a per-device basis, and is not easily observable to an
     * attacker.
       */ 
     private   void   addDeviceSpecificEntropy() {
        PrintWriter out  =  null  ;
          try   {
            out  =  new  PrintWriter( new   FileOutputStream(randomDevice));
            out.println( "Copyright (C) 2009 The Android Open Source Project" );
            out.println( "All Your Randomness Are Belong To Us" );
            out.println(START_TIME);
            out.println(START_NANOTIME);
            out.println(SystemProperties.get( "ro.serialno" ));
            out.println(SystemProperties.get( "ro.bootmode" ));
            out.println(SystemProperties.get( "ro.baseband" ));
            out.println(SystemProperties.get( "ro.carrier" ));
            out.println(SystemProperties.get( "ro.bootloader" ));
            out.println(SystemProperties.get( "ro.hardware" ));
            out.println(SystemProperties.get( "ro.revision" ));
            out.println(  new   Object().hashCode());
            out.println(System.currentTimeMillis());
            out.println(System.nanoTime());
        }   catch   (IOException e) {
            Slog.w(TAG,  "Unable to add device specific data to the entropy pool" , e);
        }   finally   {
              if  (out !=  null  ) {
                out.close();
            }
        }
    } 

看着字面的理解就是首先将一些文本信息,如”Copyright (C) 2009 The Android Open Source Project“写入到这个urandom设备(姑且认为是urandom文件)中,接着将SystemProperties获取的东东写入,最后写入系统时间等,现在看看SystemProperties到底是什么东西了。看代码:

View Code

好嘛~~~这个又是和Native有关了,留给自己接着分析了(也给大家自己分析)~~~
    第三个函数了,writeEntropy()看代码:

     private   void   writeEntropy() {
          try   {
            RandomBlock.fromFile(randomDevice).toFile(entropyFile,   true  );
        }   catch   (IOException e) {
            Slog.w(TAG,  "unable to write entropy" , e);
        }
    } 

这不就是和之前的相似吗?直接将urando设备的内容读出写入到entropy.dat中。
    第四个函数了,scheduleEntropyWriter,看代码:

     private   void   scheduleEntropyWriter() {
        mHandler.removeMessages(ENTROPY_WHAT);
        mHandler.sendEmptyMessageDelayed(ENTROPY_WHAT, ENTROPY_WRITE_PERIOD);
    } 

接着看看mHandler它是如何定义操作的:

     /**  
     * Handler that periodically updates the entropy on disk.
       */ 
     private   final  Handler mHandler =  new   Handler() {
        @Override
          public   void   handleMessage(Message msg) {
              if  (msg.what !=  ENTROPY_WHAT) {
                Slog.e(TAG,  "Will not process invalid message" );
                  return  ;
            }
            writeEntropy();
            scheduleEntropyWriter();
        }
    }; 

具体意思就是向这个类每三个小时发送一个消息,当消息到达之后,该类会再次调用writeEntropy()。。。

    现在知道这个服务是怎么进展的,但具体启动这个服务干嘛用的,有知道的教教我~~~

 

 

标签:  android entropyService

作者: Leo_wl

    

出处: http://www.cnblogs.com/Leo_wl/

    

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

版权信息

查看更多关于Android源码学习之接着浅析SystemServer的详细内容...

  阅读:36次