好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

Python Opencv实现单目标检测的示例代码

今天带来Python Opencv实现单目标检测的示例代码教程详解

一 简介

目标检测即为在图像中找到自己感兴趣的部分,将其分割出来进行下一步操作,可避免背景的干扰。以下介绍几种基于opencv的单目标检测算法,算法总体思想先尽量将目标区域的像素值全置为1,背景区域全置为0,然后通过其它方法找到目标的外接矩形并分割,在此选择一张前景和背景相差较大的图片作为示例。

二 背景前景分离

1 灰度+二值+形态学 轮廓特征和联通组件

根据图像前景和背景的差异进行二值化,例如有明显颜色差异的转换到HSV色彩空间进行分割。

1 原图

2 灰度化

3 二值化

4 形态学处理

5 提取轮廓并找出目标外接矩形

代码封装:

def get_roi_contours(image_path, morph_size, num_morph): ''' 参数详解: image_path:所需处理图片路径 morph_size:形态学处理核的大小 num_morph:进行形态学处理的次数 ''' image = cv2.imread(image_path, cv2.IMREAD_COLOR) #灰度转换 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #二值化 threhold, binary_image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) #形态学操作 kernel = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=morph_size) morph_image = cv2.morphologyEx(binary_image, cv2.MORPH_CLOSE, kernel) for i in range(num_morph-1): morph_image = cv2.morphologyEx(morph_image, cv2.MORPH_CLOSE, kernel) #查找轮廓 contours, hierarchy = cv2.findContours(morph_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) #选取轮廓面积最大的轮廓 area = 0 max_area_index = 0 for j in range(len(contours)): if area < cv2.contourArea(contours[j]): max_area_index = j area = cv2.contourArea(contours[j]) rect = cv2.boundingRect(contours[max_area_index]) return rect

6 通过联通组件找到外接矩形 代码封装:

def get_roi_ConCom(image_path, morph_size, num_morph): ''' 参数详解: image_path:所需处理图片路径 morph_size:形态学处理核的大小 num_morph:进行形态学处理的次数 ''' image = cv2.imread(image_path, cv2.IMREAD_COLOR) #灰度转换 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #二值化 threhold, binary_image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) #形态学操作 kernel = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=morph_size) morph_image = cv2.morphologyEx(binary_image, cv2.MORPH_CLOSE, kernel) for i in range(num_morph-1): morph_image = cv2.morphologyEx(morph_image, cv2.MORPH_CLOSE, kernel) #联通组件查询 numlabels, components_img, stats, centers = cv2.connectedComponentsWithStats(morph_image, 8) #获取除背景外的所有联通组件 stats_without_back = stats[1:] #获取除背景外的所有联通组件的面积最大值 max_area = np.max(stats_without_back, axis=0)[-1] #获取面积最大联通组件的index max_area_index = stats_without_back[:, -1]==max_area rect = stats_without_back[max_area_index] return np.squeeze(rect)[0:4]

2 Kmeans聚类实现前景和背景的分离

1 kmeans聚类后的图像,由于簇的中心是随机初始化的,所以目标的像素值可能为0,也可能为1,若采用opencv的findContours则要求前景像素值为1。

2 利用轮廓特征找外接矩形

由于Kmeans随机初始化簇中心导致前景目标像素不确定,采用边缘提取的方法再查找轮廓。

边缘图:

以上就是关于Python Opencv实现单目标检测的示例代码全部内容,感谢大家支持自学php网。

查看更多关于Python Opencv实现单目标检测的示例代码的详细内容...

  阅读:35次