import nltk nltk.download()
import urllib.request response = urllib.request.urlopen('http://php测试数据/') html = response.read() print (html)
from bs4 import BeautifulSoup import urllib.request response = urllib.request.urlopen('http://php测试数据/') html = response.read() soup = BeautifulSoup(html,"html5lib") # 这需要安装html5lib模块 text = soup.get_text(strip=True) print (text)
from bs4 import BeautifulSoup import urllib.request response = urllib.request.urlopen('http://php测试数据/') html = response.read() soup = BeautifulSoup(html,"html5lib") text = soup.get_text(strip=True) tokens = text.split() print (tokens)
from bs4 import BeautifulSoup import urllib.request import nltk response = urllib.request.urlopen('http://php测试数据/') html = response.read() soup = BeautifulSoup(html,"html5lib") text = soup.get_text(strip=True) tokens = text.split() freq = nltk.FreqDist(tokens) for key,val in freq.items(): print (str(key) + ':' + str(val))
freq.plot(20, cumulative=False) # 需要安装matplotlib库
from nltk.corpus import stopwords stopwords.words('english')
clean_tokens = list() sr = stopwords.words('english') for token in tokens: if token not in sr: clean_tokens.append(token)
from bs4 import BeautifulSoup import urllib.request import nltk from nltk.corpus import stopwords response = urllib.request.urlopen('http://php测试数据/') html = response.read() soup = BeautifulSoup(html,"html5lib") text = soup.get_text(strip=True) tokens = text.split() clean_tokens = list() sr = stopwords.words('english') for token in tokens: if not token in sr: clean_tokens.append(token) freq = nltk.FreqDist(clean_tokens) for key,val in freq.items(): print (str(key) + ':' + str(val))
from nltk.tokenize import sent_tokenize mytext = "Hello Adam, how are you? I hope everything is going well. Today is a good day, see you dude." print(sent_tokenize(mytext))
from nltk.tokenize import sent_tokenize mytext = "Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude." print(sent_tokenize(mytext))
from nltk.tokenize import word_tokenize mytext = "Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude." print(word_tokenize(mytext))
from nltk.tokenize import sent_tokenize mytext = "Bonjour M. Adam, comment allez-vous? J'espère que tout va bien. Aujourd'hui est un bon jour." print(sent_tokenize(mytext,"french"))
from nltk.corpus import wordnet syn = wordnet.synsets("pain") print(syn[0].definition()) print(syn[0].examples())
from nltk.corpus import wordnet syn = wordnet.synsets("NLP") print(syn[0].definition()) syn = wordnet.synsets("Python") print(syn[0].definition())
from nltk.corpus import wordnet synonyms = [] for syn in wordnet.synsets('Computer'): for lemma in syn.lemmas(): synonyms.append(lemma.name()) print(synonyms)
from nltk.corpus import wordnet antonyms = [] for syn in wordnet.synsets("small"): for l in syn.lemmas(): if l.antonyms(): antonyms.append(l.antonyms()[0].name()) print(antonyms)
from nltk.stem import PorterStemmer stemmer = PorterStemmer() print(stemmer.stem('working')) print(stemmer.stem('worked'))
from nltk.stem import SnowballStemmer print(SnowballStemmer.languages) 'danish', 'dutch', 'english', 'finnish', 'french', 'german', 'hungarian', 'italian', 'norwegian', 'porter', 'portuguese', 'romanian', 'russian', 'spanish', 'swedish'
from nltk.stem import SnowballStemmer french_stemmer = SnowballStemmer('french') print(french_stemmer.stem("French word"))
from nltk.stem import PorterStemmer stemmer = PorterStemmer() print(stemmer.stem('increases'))
from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() print(lemmatizer.lemmatize('increases'))
from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() print(lemmatizer.lemmatize('playing', pos="v"))
from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() print(lemmatizer.lemmatize('playing', pos="v")) print(lemmatizer.lemmatize('playing', pos="n")) print(lemmatizer.lemmatize('playing', pos="a")) print(lemmatizer.lemmatize('playing', pos="r"))
from nltk.stem import WordNetLemmatizer from nltk.stem import PorterStemmer stemmer = PorterStemmer() lemmatizer = WordNetLemmatizer() print(stemmer.stem('stones')) print(stemmer.stem('speaking')) print(stemmer.stem('bedroom')) print(stemmer.stem('jokes')) print(stemmer.stem('lisa')) print(stemmer.stem('purple')) print('----------------------') print(lemmatizer.lemmatize('stones')) print(lemmatizer.lemmatize('speaking')) print(lemmatizer.lemmatize('bedroom')) print(lemmatizer.lemmatize('jokes')) print(lemmatizer.lemmatize('lisa')) print(lemmatizer.lemmatize('purple'))
输出:
stone
speak
bedroom
joke
lisa
purpl
---------------------
stone
speaking
bedroom
joke
lisa
purple
词干提取不会考虑语境,这也是为什么词干提取比变体还原快且准确度低的原因。
个人认为,变体还原比词干提取更好。单词变体还原返回一个真实的单词,即使它不是同一个单词,也是同义词,但至少它是一个真实存在的单词。
如果你只关心速度,不在意准确度,这时你可以选用词干提取。
在此NLP教程中讨论的所有步骤都只是文本预处理。在以后的文章中,将会使用Python NLTK来实现文本分析。
相关推荐:
分享python snownlp的实例教程
Python之正弦曲线实现方法分析
Python调式知识详解
以上就是浅谈Python NLP入门的详细内容,更多请关注Gxl网其它相关文章!
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://haodehen.cn/did81680