import numpy as np #创建Numpy p1 = np.array([1, 2, 3]) print p1 print p1.dtype
[1 2 3] int64
#求平均值 print p1.mean()
#求标准差 print p1.std()
#求和、求最大值、求最小值 print p1.sum() print p1.max() print p1.min()
6 3 1
#求最大值所在位置 print p1.argmax()
p1 = np.array([1, 2, 3]) p2 = np.array([2, 5, 7])
#向量相加,各个元素相加 print p1 + p2
#向量乘以1个常数 print p1 * 2
#向量相减 print p1 - p2
#向量相乘,各个元素之间做运算 print p1 * p2
#向量与一个常数比较 print p1 > 2
a = np.array([1, 2, 3, 4, 5]) print a
b = a > 2 print b
a = np.array([1, 2, 3, 4]) b = a a += np.array([1, 1, 1, 1]) print b
a = np.array([1, 2, 3, 4]) b = a a = a + np.array([1, 1, 1, 1]) print b
l1 = [1, 2, 3, 5] l2 = l1[0:2] l2[0] = 5 print l2 print l1
[5, 2] [1, 2, 3, 5]
p1 = np.array([1, 2, 3, 5]) p2 = p1[0:2] p2[0] = 5 print p1 print p2
[5 2 3 5] [5 2]
p1 = np.array([[1, 2, 3], [7, 8, 9], [2, 4, 5]]) #获取其中一维数组 print p1[0]
#获取其中一个元素,注意它可以是p1[0, 1],也可以p1[0][1] print p1[0, 1] print p1[0][1]
2 2
#求和是求所有元素的和 print p1.sum()
41 [10 14 17]
#获取每一列的结果 print p1.sum(axis=0)
#获取每一行的结果 print p1.sum(axis=1)
#mean函数也可以设置axis print p1.mean(axis=0)
import pandas as pd pd1 = pd.Series([1, 2, 3]) print pd1
0 1 1 2 2 3 dtype: int64
#也可以求和和标准偏差 print pd1.sum() print pd1.std()
6 1.0
p1 = pd.Series( [1, 2, 3], index = ['a', 'b', 'c'] ) print p1
a 1 b 2 c 3 dtype: int64
p1 = pd.DataFrame({ 'name': ['Jack', 'Lucy', 'Coke'], 'age': [18, 19, 21] }) print p1
age name 0 18 Jack 1 19 Lucy 2 21 Coke
#获取name一列 print p1['name']
0 Jack 1 Lucy 2 Coke Name: name, dtype: object
#获取姓名的第一个 print p1['name'][0]
#使用p1[0]不能获取第一行,但是可以使用iloc print p1.iloc[0]
age 18 name Jack Name: 0, dtype: object
def func(value): return value * 3 pd1 = pd.Series([1, 2, 5])
0 3 1 6 2 15 dtype: int64
pd2 = pd.DataFrame({ 'name': ['Jack', 'Lucy', 'Coke'], 'age': [18, 19, 21] }) print pd2.apply(func)
age name 0 54 JackJackJack 1 57 LucyLucyLucy 2 63 CokeCokeCoke
pd2 = pd.DataFrame({ 'weight': [120, 130, 150], 'age': [18, 19, 21] })
0 138 1 149 2 171 dtype: int64
#计算每一行的值 print pd2.sum(axis='columns')
0 138 1 149 2 171 dtype: int64
#计算每一列的值 print pd2.sum(axis='index')
age 58 weight 400 dtype: int64
pd2 = pd.DataFrame({ 'name': ['Jack', 'Lucy', 'Coke', 'Pol', 'Tude'], 'age': [18, 19, 21, 21, 19] }) #以年龄分组 print pd2.groupby('age').groups
pd1 = pd.Series( [1, 2, 3], index = ['a', 'b', 'c'] ) pd2 = pd.Series( [1, 2, 3], index = ['a', 'c', 'd'] )
a 2.0 b NaN c 5.0 d NaN dtype: float64
a 2.0 b 2.0 c 5.0 d 3.0 dtype: float64
同样,它可以应用在Pandas的dataFrame中,只是需要注意列与行都要对应起来。
总结
这一周学习了优达学城上分析基础的课程,使用的是Numpy与Pandas。对于Numpy,以前在Tensorflow中用过,但是很不明白,这次学习之后,才知道那么简单,算是有一定的收获。
以上就是python之Numpy和Pandas的使用介绍的详细内容,更多请关注Gxl网其它相关文章!
查看更多关于python之Numpy和Pandas的使用介绍的详细内容...
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://haodehen.cn/did81751