不限编程语言,例如python、JavaScript 等。
回复内容:
yield 在 JavaScript 中用的最多的可能就是结合 Promise/Thunk 等实现异步操作,比如大名鼎鼎的 tj/co · GitHub ,所以已经不是「让人意想不到」的东西了。
理解 Generator 的特性后,实现一个玩具版的 co 还是很简单的:
function async(generator) { return new Promise(function(resolve, reject) { var g = generator() function next(val) { var result = g.next(val) var value = result.value if (!result.done) { value.then(next).catch(reject) } else { resolve(value) } } next() }) }最典型的不就是async/await么?
不了解yield怎么实现async/await的,用C#代码试举一例:
IEnumerable> SomeAsyncMethod() { //blabla yield return await( asyncMethod, context ); //blabla yield return await( asyncMethod, context ); //blabla }可以做动画呀,效果如图:
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation import math , random # 需要安装的库:Numpy和Matplotlib,推荐直接Anaconda fig , axes1 = plt . subplots () # 设置坐标轴长度 axes1 . set_ylim ( 0 , 1.4 ) axes1 . set_xlim ( 0 , 1 * np . pi / 0.01 ) # 设置初始x、y数值数组 xdata = np . arange ( 0 , 2 * np . pi , 0.01 ) ydata = np . sin ( xdata ) # 获得线条 line , = axes1 . plot ( xdata ) # 毛刺倍率,从0开始增长,offset越大毛刺越大 offset = 0.0 #因为update的参数是调用函数data_gen,所以第一个默认参数不能是framenum def update ( data ): global offset line . set_ydata ( data ) return line , # 每次生成10个随机数据 # 每次变化整幅图的话,yield一个整图就行了 def data_gen (): global offset while True : length = float ( len ( xdata )) for i in range ( len ( xdata )): ydata [ i ] = math . sin ( xdata [ i ]) + 0.2 if i > length / 18.0 and i ( length * 2.7 / 6.0 ): ydata [ i ] += offset * ( random . random () - 0.5 ) offset += 0.05 #可以设置offset的最大值 if offset >= 0.5 : offset = 0.0 yield ydata # 配置完毕,开始播放 ani = animation . FuncAnimation ( fig , update , data_gen , interval = 800 , repeat = True ) plt . show ()模拟离散事件,还有更简洁优雅的方式么
Overview — SimPy 3.0.8 documentation 这个问题就是给我准备的嘛
当有人声称在CPython里实现了一个沙盒的时候就可以用yield去逗他了,I was looking through the code and saw someone submitted this but didn't run it:...
酷到没工作... A Curious Course on Coroutines and Concurrency 可以写出一个并发的库
Generator Tricks for Systems Programmers 可以写个流处理框架 参见David Beazley大神几次PyCon的pdf,看完我简直是惊呆了。 http://HdhCmsTest dabeaz测试数据 可以用来训练神经网络.
比如Lasagne/Lasagne · GitHub 中的一段示例代码:
def train ( iter_funcs , dataset , batch_size = BATCH_SIZE ): """Train the model with `dataset` with mini-batch training. Each mini-batch has `batch_size` recordings. """ num_batches_train = dataset [ 'num_examples_train' ] // batch_size num_batches_valid = dataset [ 'num_examples_valid' ] // batch_size for epoch in itertools . count ( 1 ): batch_train_losses = [] for b in range ( num_batches_train ): batch_train_loss = iter_funcs [ 'train' ]( b ) batch_train_losses . append ( batch_train_loss ) avg_train_loss = np . mean ( batch_train_losses ) batch_valid_losses = [] batch_valid_accuracies = [] for b in range ( num_batches_valid ): batch_valid_loss , batch_valid_accuracy = iter_funcs [ 'valid' ]( b ) batch_valid_losses . append ( batch_valid_loss ) batch_valid_accuracies . append ( batch_valid_accuracy ) avg_valid_loss = np . mean ( batch_valid_losses ) avg_valid_accuracy = np . mean ( batch_valid_accuracies ) yield { 'number' : epoch , 'train_loss' : avg_train_loss , 'valid_loss' : avg_valid_loss , 'valid_accuracy' : avg_valid_accuracy , }tornado就是使用generator实现的协程(coroutine)模型,再配合event loop实现高并发的 使用迭代器遍历二叉树。
查看更多关于使用yield可以做哪些很酷的事情?的详细内容...
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://haodehen.cn/did89905