不限编程语言,例如python、JavaScript 等。
回复内容:
yield 在 JavaScript 中用的最多的可能就是结合 Promise/Thunk 等实现异步操作,比如大名鼎鼎的 tj/co · GitHub ,所以已经不是「让人意想不到」的东西了。
理解 Generator 的特性后,实现一个玩具版的 co 还是很简单的:
function async(generator) {
return new Promise(function(resolve, reject) {
var g = generator()
function next(val) {
var result = g.next(val)
var value = result.value
if (!result.done) {
value.then(next).catch(reject)
}
else {
resolve(value)
}
}
next()
})
}
最典型的不就是async/await么?不了解yield怎么实现async/await的,用C#代码试举一例:
IEnumerable> SomeAsyncMethod()
{
//blabla
yield return await( asyncMethod, context );
//blabla
yield return await( asyncMethod, context );
//blabla
}
可以做动画呀,效果如图: # -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import math , random
# 需要安装的库:Numpy和Matplotlib,推荐直接Anaconda
fig , axes1 = plt . subplots ()
# 设置坐标轴长度
axes1 . set_ylim ( 0 , 1.4 )
axes1 . set_xlim ( 0 , 1 * np . pi / 0.01 )
# 设置初始x、y数值数组
xdata = np . arange ( 0 , 2 * np . pi , 0.01 )
ydata = np . sin ( xdata )
# 获得线条
line , = axes1 . plot ( xdata )
# 毛刺倍率,从0开始增长,offset越大毛刺越大
offset = 0.0
#因为update的参数是调用函数data_gen,所以第一个默认参数不能是framenum
def update ( data ):
global offset
line . set_ydata ( data )
return line ,
# 每次生成10个随机数据
# 每次变化整幅图的话,yield一个整图就行了
def data_gen ():
global offset
while True :
length = float ( len ( xdata ))
for i in range ( len ( xdata )):
ydata [ i ] = math . sin ( xdata [ i ]) + 0.2
if i > length / 18.0 and i ( length * 2.7 / 6.0 ):
ydata [ i ] += offset * ( random . random () - 0.5 )
offset += 0.05
#可以设置offset的最大值
if offset >= 0.5 :
offset = 0.0
yield ydata
# 配置完毕,开始播放
ani = animation . FuncAnimation ( fig , update , data_gen , interval = 800 , repeat = True )
plt . show ()
模拟离散事件,还有更简洁优雅的方式么Overview — SimPy 3.0.8 documentation 这个问题就是给我准备的嘛
当有人声称在CPython里实现了一个沙盒的时候就可以用yield去逗他了,I was looking through the code and saw someone submitted this but didn't run it:...
酷到没工作... A Curious Course on Coroutines and Concurrency 可以写出一个并发的库
Generator Tricks for Systems Programmers 可以写个流处理框架 参见David Beazley大神几次PyCon的pdf,看完我简直是惊呆了。 http://HdhCmsTest dabeaz测试数据 可以用来训练神经网络.
比如Lasagne/Lasagne · GitHub 中的一段示例代码:
def train ( iter_funcs , dataset , batch_size = BATCH_SIZE ):
"""Train the model with `dataset` with mini-batch training. Each
mini-batch has `batch_size` recordings.
"""
num_batches_train = dataset [ 'num_examples_train' ] // batch_size
num_batches_valid = dataset [ 'num_examples_valid' ] // batch_size
for epoch in itertools . count ( 1 ):
batch_train_losses = []
for b in range ( num_batches_train ):
batch_train_loss = iter_funcs [ 'train' ]( b )
batch_train_losses . append ( batch_train_loss )
avg_train_loss = np . mean ( batch_train_losses )
batch_valid_losses = []
batch_valid_accuracies = []
for b in range ( num_batches_valid ):
batch_valid_loss , batch_valid_accuracy = iter_funcs [ 'valid' ]( b )
batch_valid_losses . append ( batch_valid_loss )
batch_valid_accuracies . append ( batch_valid_accuracy )
avg_valid_loss = np . mean ( batch_valid_losses )
avg_valid_accuracy = np . mean ( batch_valid_accuracies )
yield {
'number' : epoch ,
'train_loss' : avg_train_loss ,
'valid_loss' : avg_valid_loss ,
'valid_accuracy' : avg_valid_accuracy ,
}
tornado就是使用generator实现的协程(coroutine)模型,再配合event loop实现高并发的
使用迭代器遍历二叉树。
查看更多关于使用yield可以做哪些很酷的事情?的详细内容...
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://haodehen.cn/did89905